HW 7 Math 563 Due Monday, Nov. 25, 2019

1. Let $X \sim U[0,1]$, and η be a r.v. given by

$$
\eta=\left\{\begin{array}{rl}
X & X<1 / 2 \\
1 / 2 & X \geq 1 / 2
\end{array}\right.
$$

Find $E[X \mid \eta]$.
2. Let (X, Y) be a real random vector with joint density $e^{-y} 1(0<x<y)$. Compute $E[Y \mid X], \operatorname{Var}(Y \mid X)$ and $\operatorname{Var}(Y)$. More generally, in a probability space (Ω, \mathcal{B}, P), where X is a random variable (with $E\left[X^{2}\right]<\infty$) and \mathcal{F} a sub-sigma field, show that

$$
\operatorname{Var}(X)=E[\operatorname{Var}(X \mid \mathcal{F})]+\operatorname{Var}(E[X \mid \mathcal{F}])
$$

(see Durrett 5.1.9)
3. Let $\left\{Y_{n}\right\}$ be independent, positive r.v.'s with mean $E\left[Y_{n}\right]=1$ for all $n \geq 1$. Let $X_{n}=\prod_{i=1}^{n} Y_{i}$.
(a) Show that $\left\{X_{n}\right\}$ is a martingale with respect to $\mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$.
(b) Show that X_{n} converges a.s. to a r.v. X where $E[X]<\infty$.
(c) Suppose specifically now that $\left\{Y_{n}\right\}$ are iid with $P\left(Y_{n}=1 / 2\right)=P\left(Y_{n}=3 / 2\right)=1 / 2$. Identify the distribution of X.

