HW 8 Math 563
Due Wednesday, December 11, 2019. [We can discuss solutions on this day]

1. (Durrett 4.1.4 and 4.1.6) Suppose S and T are stopping times.
(a) Is $S+T$ a stopping time?
(b) if $S \leq T$, show that $\mathcal{F}_{S} \subset \mathcal{F}_{T}$.
2. [optional as we may not get to this section, but one might try for an intuitive argument] (Durrett 5.5.2) Let Z_{1}, Z_{2}, \ldots be iid with $E\left[\left|Z_{1}\right|\right]<\infty$. Let θ be an independent r.v. with finite mean and $Y_{i}=Z_{i}+\theta$, e.g. adding some noise each term. If Z_{i} are $N(0,1)$, show that $E\left[\theta \mid Y_{1}, \ldots, Y_{n}\right] \rightarrow \theta$ a.s. [The distribution of θ is the prior distribution and that of θ given Y_{1}, \ldots, Y_{n} is the posterior distribution.
3. A population consists of two types of atoms. Those who give rise to 3 atoms (type A), and those who do no propagate (type B). When an atom is born, the chance it is type A is $1 / 2$. Starting from a type A atom, what is the chance the atom's family dies out?
4. Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be a bounded function on the integers. Suppose, for all $x \in \mathbb{Z}$, we have

$$
f(x)=\frac{1}{2}(f(x-1)+f(x+1))
$$

(a) Consider fair RW, $S_{n}=x_{0}$ and $S_{n}=\sum_{i=1}^{n} \xi_{i}$ for $n \geq 1$ where $\left\{\xi_{i}\right\}$ are iid with $P\left(\xi_{1}=1\right)=P\left(\xi_{1}=-1\right)=1 / 2$. Show that $\left\{f\left(S_{n}\right)\right\}$ is a martingale with respect to $\mathcal{F}_{n}=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$.
(b) Let $T_{y}=\inf \left\{n \geq 1: S_{n}=y\right\}$ be the hitting time of $y \in \mathbb{Z}$. It has been argued in class that $T_{y}<\infty$. Show now that $f\left(x_{0}\right)=f(y)$, and therefore f is constant! [This means bounded, harmonic (w.r.t. fair RW) functions on \mathbb{Z} are constant]
5. (Polya's Urn). An urn contains b black and r red balls. A ball is drawn at random. It is then replaced and moreover c balls of the color drawn are added. Let $X_{0}=b /(b+r)$, and let X_{n} be the proportion of black balls attained at stage n, that is just after the nth draw and replacement. Show that $\left\{X_{n}\right\}$ with respect to the natural σ-fields is a martingale. Explain why it converges a.s.
[This is the classic example of 'reinforcement'; if you have time, one might simulate to see what the limit distribution looks like for some choices of b, r, c (e.g. $b=r=c=1$)-we already know $X_{n}(\omega) \rightarrow X_{\infty}(\omega)$ a.s., something much stronger than weak convergence. See also section 5.3.2 Durrett for some calculations, and an answer to what the limit distribution is.]

