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Part I

Rounding errors and numerical stability
Very often the study of numerical analysis starts with the topic of rounding errors. These class

notes is not an exception.1 Suggested reading: [TrBa97, Lecs. 12–15] and [Hig02, Chs. 1, 2].

1 Floating-point arithmetic
One can come up with 3 ways to represent information: I) analogue, II) digital, and III) algorith-

mical. Examples of information in analogue form would be: a length of a wooden stick, printed photo,
audio tape recording,2 a mass of an object. Examples of information in digital form are: post address,
a text in a book, computer file, etc. Algorithmic way of presenting /storing information instead of
giving information per se, just operates with a recipe how to produce the information. Information in
digital form is easier to handle.3 In computer the information is presented in bits that could be in 2
states: 0 and 1 (or low and high voltage). Having just 2 states makes circuit design easier.4

Let us say we want to devote N bits to store a [real] number. We have 2N possible states, and
thus no more than 2N different numbers to play with. How would we spend these N bits? A possible
[linear] way is to have numbers 〈1− 2N−1,2− 2N−1, ...,−1,0,1,2, ...,2N−1− 1,2N−1〉/2E , where E
is not far from N/2. This way we have both large (about 2N−E) and small (about 2−E) numbers. It is
easy to proceed with addition in this system. Long multiplication (more elaborate than addition) can
be used. The problem is that largest and smallest non-zero numbers in this system are not that very
large or small.5

Logarithmic quantization, with numbers ±(1 + ε)E , where ε� 1 and E . 2N . This way we
could get very large and very small numbers easily, even with small relative change between the

1 Here is an essay that advocates the point of view that numerical analysis is far from being just the study of rounding
errors: L. N. Threfethen, The definition of numerical analysis, 1992.

2 Later there were devices which wrote and read audio or video information on a magnetic tape in digital form.
3 Copying without distortion is possible. Error correction is much more effective.
4 For any base or radix B one can introduce a so called “radix economy” E(B) ..= B/ lnB. It is roughly the number

of B-digits needed to represent a [large] number N multiplied by B (number of different B-digits) and divided by lnN.
Ternary system is more radix economic, E(3)< E(2), and there were some ternary computers built.

5 In many image formats (JPEG, PNG, etc.) a typical color depth is N = 8 bits. Often in digital photos some areas
are solid white due to clipping, while some others are too dark. In Compact Disc (CD) N = 16 is used. This seems to be
unsatisfactory for some, which gave rise to DVD-Audio (up to N = 24) and Super Audio CD (SACD).
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consequtive numbers. It is very easy to multiply numberes in it (but addition becomes even harder
than long multiplication in linear quantization).

A hybrid approach, combining the two, is to spend some bits (fraction or mantissa) in linear way,
while some others (exponent) in logarithmic. One bit is reserved to store the sign (positive or negative)
of the number. This is so called floating point numerical system. Eventually it was standardized as
IEEE 754 [IEEE85]. Fraction part allows easy addition and [long] multiplication, while dynamic
range is huge due to the exponent part.

Consider the following hypothetical floating-point numerical system FPFPFPN : the number in it is
either 0, or a floating-point number with the fraction made of N bits:6

±2E ·
(
1.b1b2...bN

)
2 =±2E

(
1+

N

∑
n=1

bn2−n
)

The exponent E could be any integer number, so FPFPFPN has arbitrarily small or large numbers (one can
think of 0 having exponent E =−∞). Not considering possibility of overflows/underflows, IEEE 754
single and double precision formats correspond to FPFPFP23 and FPFPFP52.

There is an obvious mapping inj : FPFPFPN →RRR. Let us construct the “best numerical representation”
mapping num : RRR→FPFPFPN by choosing num(x) to be the closest to x number from FPFPFPN (in cases where
two numbers from FPFPFPN are at the same minimal possible distance, [to imitate “round half to even”
rule] the number with larger E or (if the exponents are the same) with bN = 0 is chosen). Obviously,
num

(
inj(x)

)
= x for any x ∈FPFPFPN . The reverse is only approximately true:

Theorem 1: For any x ∈RRR we have inj
(
num(x)

)
= x(1+ ε), where |ε| ≤ εmachine

..= 2−(N+1). In
other words, it is possible to represent real numbers in floating-point numerical system FPFPFPN with
small (machine epsilon or unit roundoff εmachine) relative error.

Proof : We have num(2x) = 2num(x), so without loss of generality we can assume that 1≤ x < 2.
Within this interval FPFPFPN contains numbers 1 + k 2−N , where 0 ≤ k < 2N and k is integer. Then
|num(x)− x| ≤ 2−(N+1), and ε = (num(x)− x)/x.7

IEEE double precision arithmetic corresponds to N = 52, and εmachine = 2−53 ≈ 1.11 ·10−16, i.e.,
it deals with numbers having approximately 16 decimal digits.8

Analysis of numerical algorithms is impossible without concrete knowledge of how basic arith-
metic operations [or built-in functions like exp(·) or sin(·)] are implemented. In hypothetical imple-
mentation, that we will call virtual, the numerical arithmetic operations of addition, multiplication,
and division are defined as

x⊕ y ..= num
(
inj(x)+ inj(y)

)
, x� y ..= num

(
inj(x) · inj(y)

)
, x� y ..= num

(
inj(x)/inj(y)

)
The operation of subtration 	 is defined similarly or, e.g., as x	 y ..= x⊕ (−y), where (−y) is number
y with the sign bit being flipped. For built-in functions we would assume f (x) = num

(
f (inj(x))

)
.

This way defined arithmetic operations satisfy the following fundamental property:

for all x,y ∈FPFPFPN we have x~ y =
(
inj(x)∗ inj(y)

)
(1+ ε), where |ε| ≤ εmachine (1)

6 One can come up with a floating-point numerical system with any base or radix. An early computer ENIAC was
operating with [up to 20 digits] decimal numbers.

7 For brevity, the mapping “inj” was skipped in several places.
8 MATLAB R© defines “eps” as 2εmachine ≈ 2.22 ·10−16.
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[...]/teaching/2019-4/math_575a/notes/C$ cat print_bits.c
#include <stdio.h>
void print_bits(double x, char* s) { int i; unsigned char c;

for (i = 0; i < 8; i++) for (c = 128; c != 0; c >>= 1)
if (*((char *)(&x) + 7 - i) & c) printf("1"); else printf("0");

printf(" %s\n", s); }
int main() { int i; double x, x52;

print_bits(0., " 0");
print_bits(1., " 1");
print_bits(-1., "-1");
print_bits(0.5, "1/2");
print_bits(0.25, "1/4");
print_bits(1. / 3., "1/3");
print_bits(2., " 2");
print_bits(4., " 4");
print_bits(1.5, " 1 + 1/2");
print_bits(1. + 1. / 1024., " 1 + 2ˆ(-10)");
x52 = 1.; for (i = 0; i < 52; i++) x52 /= 2.;
print_bits(1. + x52, " 1 + 2ˆ(-52)");
print_bits(1. - x52, " 1 - 2ˆ(-52)");
print_bits(1. + (2. * x52), " 1 + 2ˆ(-51)");
print_bits(2. + (2. * x52), " 2 + 2ˆ(-51)");
x = 1.; for (i = 0; i < 1022; i++) x /= 2.; print_bits(x, " 2ˆ(-1022)");
print_bits(x * x52, " 2ˆ(-1074)");

printf("|\\___ ____/\\_________________________ _______________________/\n");
printf("| \\/ \\/\n");
printf("sign exponent (11 bits) fraction (52 bits)\n");

return 0; }
[...]/teaching/2019-4/math_575a/notes/C$ cc print_bits.c
[...]/teaching/2019-4/math_575a/notes/C$ ./a.out
0000000000000000000000000000000000000000000000000000000000000000 0
0011111111110000000000000000000000000000000000000000000000000000 1
1011111111110000000000000000000000000000000000000000000000000000 -1
0011111111100000000000000000000000000000000000000000000000000000 1/2
0011111111010000000000000000000000000000000000000000000000000000 1/4
0011111111010101010101010101010101010101010101010101010101010101 1/3
0100000000000000000000000000000000000000000000000000000000000000 2
0100000000010000000000000000000000000000000000000000000000000000 4
0011111111111000000000000000000000000000000000000000000000000000 1 + 1/2
0011111111110000000001000000000000000000000000000000000000000000 1 + 2ˆ(-10)
0011111111110000000000000000000000000000000000000000000000000001 1 + 2ˆ(-52)
0011111111101111111111111111111111111111111111111111111111111110 1 - 2ˆ(-52)
0011111111110000000000000000000000000000000000000000000000000010 1 + 2ˆ(-51)
0100000000000000000000000000000000000000000000000000000000000001 2 + 2ˆ(-51)
0000000000010000000000000000000000000000000000000000000000000000 2ˆ(-1022)
0000000000000000000000000000000000000000000000000000000000000001 2ˆ(-1074)
|\___ ____/\_________________________ _______________________/
| \/ \/
sign exponent (11 bits) fraction (52 bits)
[...]/teaching/2019-4/math_575a/notes/C$
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where ∗ is any of four +, −, ·, / operations, with⊕, 	, �, � being their floating point analogues. We
will call εmachine-valid any floating-point arithmetic implementation, such that the numerical arith-
metic operations of addition, subtraction, multiplication, and division do satisfy (1).

Problems and exercises
1. Find the minimal positive integer n in FPFPFPN such that n+1 is already not in FPFPFPN .
2. Prove that if num(x) = 0, then x = 0.
3. Prove that if x� y = 0, then at least one of x and y is equal to 0 (FPFPFPN has no zero divisors).
4. Obviously, [in virtual implementation] addition ⊕ and multiplication � operations in FPFPFPN are

commutative. Also 0 and 1 are indeed neutral elements for addition and multiplication, respectively
[why?]. Prove of disprove by counterexample that addition ⊕ is (a) associative, (b) has opposites;
multiplication � is (c) associative, (d) has inverses; and (e) distibutive property holds.

5. Plot the polynomial P(x) = (x−4)6 computed as(((
((x6−24x5)+240x4)−1280x3)+3840x2

)
−6144x

)
+4096

for x = 3.98,3.98002,3.98004, ...,4.02. Explain the quantization of the values of P(x). Also plot P(x)
computed as (x−4)6.

2 Stable and unstable numerical algorithms
Definition 2.1: A numerical algorithm is a mapping F : X ⊆RRRm→FPFPFPn

N from m-dimensional input
data to n-dimensional output, with the way how the mapping is computed [including how the input is
processed and how the output is interpreted] being clearly described. It is an attempt to numerically
simulate an ideal mapping Fexact : X → RRRn (which is the underlying [mathematical] problem, as in
[TrBa97, Lec. 12]).

Example 2.1: Consider, e.g., the problem of finding the point on a circle x2 + y2 = 1 that is the
closest to a given point (x0, y0). A possible algorithm for solving it would be a mapping (x0, y0) ∈
RRR2\(0,0) 7→

(
x0/
√

x2
0 + y2

0, y0/
√

x2
0 + y2

0
)
, here m = n = 2. Another algorithm would be a mapping

(x0, y0) 7→ ϕ ..= atan2(y0,x0), with n = 1, and the output is interpreted as the point (cosϕ, sinϕ).9

Let us say, we want to calculate F(xxx), with xxx ∈RRRm being the input. Obviously, the components
of xxx are not necessarily exactly representable in FPFPFPN . Inevitably one can expect a relative error about
εmachine just from entering xxx into a computer. Instead of calculating F(xxx), we are computing F(xxx+∆xxx),
where ∆xxx, which is called backward error, could be just a round off error in xxx.10

Definition 2.2: An algorithm F is called backward stable, if for any input xxx we have F(xxx) =
Fexact(xxx+ηηη) with ‖ηηη‖ ∼ εmachine‖xxx‖.11 In other words, the output F(xxx) is the exact answer to the
problem with input relatively very close to xxx.12

An algorithm being backward stable is the best one can hope for, as backward error is unavoid-
able. In Example 2.1 the atan2 version is backward stable, while m = n = 2 version is not, as the

9 atan2 in C — arc tangent function of two variables.
10 Sometimes the input is known only up to some uncertainty. In many cases, e.g., weather prediction, people compute

F(xxx+∆xxx), with several ∆xxx of the order of the uncertainty, to estimate the resulting uncertainty in F(xxx).
11 Here ‖·‖ is a magnitude measured somehow. See definition of norm in MATH 527 (theory) course, and also Sec 4.1.
12 It is assumed that all floating point arithmetical operations inside the algorithm F are done in [some] εmachine-valid

implementation. One can introduce a notion of virtually backward stable algorithm, if virtual implementation is used.
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resulted point may be not exactly on the unit circle (whenever the exact answer lies in a lower than
n dimensional submanifold, it is almost hopeless for the numerical answer to be in it and for the
algorithm to be backward stable).

Definition 2.3: An algorithm F is called stable, if for any [reasonable of feasible] input xxx we have
F(xxx) = Fexact(xxx+ηηη)+εεε with ‖ηηη‖ ∼ εmachine‖xxx‖ and ‖εεε‖ ∼ εmachine‖F(xxx)‖. In other words, the output
F(xxx) is relatively close answer to the exact one for the problem with input very close to xxx.

Any backward stable algorithm is stable, but not vice versa. Both algorithms in Example 2.1 are
stable. Both definitions of backward stable and stable algorithms are about asymptotic behavior of
errors in the limit εmachine→ 0. Namely, for sufficiently small εmachine, the relative errors are bounded
by some constant multiplied by εmachine.13

Example 2.2: computing exp(x) using Taylor series
A typical scenario in which numerical accuracy is lost is when a small number is obtained as a

sum/difference of almost opposite / same numbers.
Algorithm exp(x)∧: Input: x ∈RRR. Output: exp(x), computed by summing ∑

∞
n=0 xn/n! from left

to right, stopping when adding a term does not change the partial sum.

[...]/teaching/2019-4/math_575a/notes/Python$ cat exp.py
from math import exp
for x in [-50., -40., -30., -20., -15., -10., -2., -1., 0., 1., 10., 30.]:

taylor, sum, n, xnf = 0., 1., 1, x
while taylor != sum:

taylor, sum, n, xnf = sum, sum + xnf, n + 1, x * xnf / (n + 1.)
print(’exp({0: 3.0f}.) = {1: .15e} = {2:.15e}’.format(x, taylor, exp(x)))

[...]/teaching/2019-4/math_575a/notes/Python$ python exp.py
exp(-50.) = 1.107293338289197e+04 = 1.928749847963918e-22
exp(-40.) = -3.165731894063124e+00 = 4.248354255291589e-18
exp(-30.) = -3.066812356356220e-05 = 9.357622968840175e-14
exp(-20.) = 5.621884472130418e-09 = 2.061153622438558e-09
exp(-15.) = 3.059094197302007e-07 = 3.059023205018258e-07
exp(-10.) = 4.539992962303128e-05 = 4.539992976248485e-05
exp( -2.) = 1.353352832366128e-01 = 1.353352832366127e-01
exp( -1.) = 3.678794411714424e-01 = 3.678794411714423e-01
exp( 0.) = 1.000000000000000e+00 = 1.000000000000000e+00
exp( 1.) = 2.718281828459046e+00 = 2.718281828459045e+00
exp( 10.) = 2.202646579480671e+04 = 2.202646579480672e+04
exp( 30.) = 1.068647458152447e+13 = 1.068647458152446e+13
[...]/teaching/2019-4/math_575a/notes/Python$

The series ∑
∞
n=0 xn/n! converges for any x. If the operations with numbers are done exactly, then

the algorithm (although never finishing, as the whole series needs to be went through) would output
an exact answer. When x is large and negative, some terms in the series are large, although the
answer is small. The small answer exp(−|x|) is produced as an almost cancellation of as large as
exp(|x|) numbers. Whenever |x| is so large, that exp(−|x|) is of the order of 2−N exp(|x|), one should
not trust any digits of an outputted answer. For IEEE double precision (N = 52) this happens for
x∼− ln(252)/2≈−18. The algorithm is heavily unstable when applied to large negative x.

13 For the algorithm to be practically useful, it doesn’t necessarily have to be stable. Let us call an algorithm ζ-
semistable with 0 < ζ≤ 1, if limεmachine→0+ ln(relative errors)/ ln(εmachine) = ζ. The Algorithm ζ(3)∧ from Example 2.3 is
(2/3)-semistable, while Algorithm π∩ from Example 2.4 and possible algorithm from Example 3.2 are (1/2)-semistable.
The Algorithm exp(1)∧ from Example 2.2 that computes e≈ 2.72 is 1-semistable, but [strictly speaking] is not stable.
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5

Even when applied for x > 0 only (i.e., when there are no sign changes in the term of the series),
the algorithm is not [strictly speaking] backward stable. The larger is N, the larger is the number of
terms that one needs to sum (although here it slowly grows with N, as n! grows very fast). When
the partial sum is already not much smaller than the answer, each addition potentially introduces a
relative error of the order of εmachine.

In practice, for large positive x, one would expect [why?] the algorithm to produce exp(x) ·
(
1+

O(x1/2εmachine)
)
, or maybe even exp(x) ·

(
1+O(x1/4εmachine)

)
.

Example 2.3: computing ζ(3) by summing the series
Whenever one has a bunch of numbers to sum, it is more safe to add small numbers together first,

and add large numbers later.
Let us consider two algorithms for computing

Apéry’s14 constant ζ(3) ..=
∞

∑
n=1

1
n3 = 1.202056903159594285...

Algorithm ζ(3)∧: Input: none. Output: ζ(3), computed by summing ∑
∞
n=1 1/n3 from left to right,

stopping when adding a term does not change the partial sum.
Algorithm ζ(3)∨: Input: none. Output: ζ(3), computed by summing ∑

∞
n=1 1/n3 from right to

left, starting at some sufficiently large n.
[...]/teaching/2019-4/math_575a/notes/Python$ cat zeta3.py
zeta3, sum, n = 1., 0., 1
while zeta3 != sum:

zeta3, sum, n = sum, sum + 1. / float(n**3), n + 1
print(’ forward summation: zeta(3) = {0:.15f}’.format(zeta3))
zeta3, n = 0., 25000000
while n > 0:

zeta3, n = zeta3 + 1. / float(n**3), n - 1
print(’backward summation: zeta(3) = {0:.15f}’.format(zeta3))
[...]/teaching/2019-4/math_575a/notes/Python$ python3 zeta3.py
forward summation: zeta(3) = 1.202056903150321
backward summation: zeta(3) = 1.202056903159594
[...]/teaching/2019-4/math_575a/notes/Python$

14 R. Apéry, Irrationalité de ζ(2) et ζ(3), Astérisque 61, 11–13 (1979). [Number ζ(3) is proved to be irrational.]

6



As it is not possible to represent the number ζ(3) exactly in FPFPFPN [for any finite N], any numerical
algorithm for computing ζ(3) can not be backward stable. The answer in Algorithm ζ(3)∧ ignores
the tail of the series starting at about n∗ ∼ 1/ε

1/3
machine, and the value of the ignored tail is about 1/n2

∗ ∼
ε

2/3
machine — about 2/3 of the significant digits should be correct.

Example 2.4: computing π by maximizing sin(·)
Another common source of accuracy loss is determining a quantity from a function which is not

very sensitive to it, e.g., finding position of an extremum of a function.
Algorithm π∩: Input: none. Output: π, determined as 2 multiplied by the position of the first

maximum of sin(x). The latter computed as the largest x such that sin(x) still grows locally:

[...]/teaching/2019-4/math_575a/notes/C$ cat find_pi.c
#include <stdio.h>
#include <math.h>
int main() { double pi2, step;

for (pi2 = 0., step = 1.; pi2 + step != pi2; )
if ((sin(pi2 + 2. * step) > sin(pi2 + step))
&& (sin(pi2 + step) > sin(pi2)))
pi2 = pi2 + step; else step *= 0.5;

printf("computed pi = %22.16e\n", 2. * pi2);
printf(" pi = %22.16e\n", M_PI);
return 0; }

[...]/teaching/2019-4/math_575a/notes/C$ cc find_pi.c -lm
[...]/teaching/2019-4/math_575a/notes/C$ ./a.out
computed pi = 3.1415926218032837e+00

pi = 3.1415926535897931e+00
[...]/teaching/2019-4/math_575a/notes/C$

Here π is found from the maximization of sin(x) near x = π/2. We have sin(x)≈ 1−(x−π/2)2/2
there. Whenever (x−π/2)2 ∼ 2−N , the difference of sin(x) from 1 is too small for FPFPFPN to handle. At
the distance about 2−N/2 from π/2 the numerical function sin(x) stops to change, which causes only
about half of the digits in computed value of π to be correct.

[...]/teaching/2019-4/math_575a/notes/C$ cat sin_near_1.c
#include <stdio.h>
#include <math.h>
double x53;
double f(double x) { return (x53 * (1. - sin(x))); }
int main() { int i;

for (x53 = 1., i = 0; i < 53; i++) x53 *= 2.;
printf("f(x) = 2ˆ(53) * (1 - sin(x))\n");
printf("f(pi / 2 - 2.e-8) = %6.4f\n", f(M_PI / 2. - 2.e-8));
printf("f(pi / 2 - 1.8e-8) = %6.4f\n", f(M_PI / 2. - 1.8e-8));
printf("f(pi / 2 - 1.1e-8) = %6.4f\n", f(M_PI / 2. - 1.1e-8));
printf("f(pi / 2 - 1.05e-8) = %6.4f\n", f(M_PI / 2. - 1.05e-8));
printf("f(pi / 2 - 1.e-8) = %6.4f\n", f(M_PI / 2. - 1.e-8));
printf("f(pi / 2) = %6.4f\n", f(M_PI / 2.));
printf("f(pi / 2 + 1.e-8) = %6.4f\n", f(M_PI / 2. + 1.e-8));
return 0; }

[...]/teaching/2019-4/math_575a/notes/C$ cc sin_near_1.c -lm
[...]/teaching/2019-4/math_575a/notes/C$ ./a.out
f(x) = 2ˆ(53) * (1 - sin(x))
f(pi / 2 - 2.e-8) = 2.0000

7



f(pi / 2 - 1.8e-8) = 1.0000
f(pi / 2 - 1.1e-8) = 1.0000
f(pi / 2 - 1.05e-8) = 0.0000
f(pi / 2 - 1.e-8) = 0.0000
f(pi / 2) = 0.0000
f(pi / 2 + 1.e-8) = 0.0000
[...]/teaching/2019-4/math_575a/notes/C$

IEEE double precision, similar to FPFPFP52, contains numbers 1− k · 2−53 and 1+ k · 2−52 with [not too
large] non-negative k necessarily being integer. For up to |x− π/2| < 10−8 this integer number, in
order to represent the value of sin(x) better, is equal to 0.

Problems and exercises
1. Consider the following algorithm: Input: two vectors

xxx,yyy ∈RRRn. Output: geometric angle between the two vectors,
computed as arccos

(
(xxx ·yyy)/‖xxx‖‖yyy‖

)
. The norm ‖xxx‖ is calcu-

lated as
√

xxx ·xxx. It this algorithm backward stable, stable but
not backward stable, or unstable?

2. The graph on the right is the result of numerical cal-
culation of (exp(x)−1)/x (being computed as it is written).
On the other hand, if the function would be computed as
(exp(x)−1)/ ln(exp(x)), then the result would be very close
to 1 (as it should be). Explain the difference between the two
cases.15 16

10−15 10−14 10−13
0.9

1

1.1

x

y

3 Condition number
Consider a numerical algorithm F : X ⊆RRRm→FPFPFPn

N . As there are inevitable rounding off errors in
processing the input (and in internal calculations), it is important to realize how sensitive F is to small
perturbations of the input. A useful quantity to measure that is [relative] condition number, which is
defined as

κ(F,xxx) ..=
‖F(xxx+∆xxx)−Fexact(xxx)‖

‖Fexact(xxx)‖︸ ︷︷ ︸
relative change of output due to perturbation ∆xxx and numerical errors

/of the order of εmachine︷ ︸︸ ︷
‖∆xxx‖
‖xxx‖

, κ(F) ..= max
xxx∈X

κ(F,xxx)

This definition is loose, as how the magnitude ‖ · ‖ of relative changes is measured is not specified. If
all computations inside the algorithm are assumed to be exact, the condition number is the property
of the mapping Fexact ifself (or of underlying the [mathematical] problem, as in [TrBa97, Lec. 12]).
In the limit εmachine→ 0 and in the case of that mapping being differentiable, the condition number is
determined by Jacobian of Fexact mapping: κ(Fexact,xxx) = ‖J(Fexact)

∣∣
at xxx‖‖xxx‖/‖Fexact(xxx)‖.

Example 3.1: Consider a function that is ath power a number: ·a : x 7→ xa, with m = n = 1 (here
x > 0 and a is fixed). In the limit εmachine→ 0, we have κ(·a) =

(
(xa)′/xa)/(1/x) = a.

[Pathological] Example 3.2: Consider the mapping H : [0,1]→ [0,1]2 which is the Hilbert curve.

15 You can assume that both exp(·) and ln(·) are implemented as “numerical f ”(x) = num
(

f (inj(x))
)
.

16 Look up expm1 in Python — ex−1 to full precision, even for small x.
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H1 H2 H3 H4 H5

We have H = lim
n→∞

Hn. One has κ(H) ∼ ε
−1/2
machine. Even if implemented in the best possible way, the

algorithm would produce only half of the answer’s signigicant digits right.
Example 3.3: Consider the algorithm 	 : (x,y) ∈RRR2 7→

(
num(x)	num(y)

)
∈ FPFPFPN , with m = 2

and n = 1, which calculates the difference between the numbers x and y. We have

κ(	,x,y) = εmachine|x|+ εmachine|y|
|x− y|

· 1
εmachine

=
|x|+ |y|
|x− y|

The condition number is large when x and y are relatively close, i.e., when the result x− y is much
smaller than x or y. Addition /subtraction of large numbers resulting in small number could greatly
deteriorate the relative accuracy. (See, e.g., Example 2.2.)

Example 3.4: In “Lucky Numbers” part of “Surely, You are joking, Mr. Feynman” an “impos-
sible” task to calculate tan(10100) [in one minute with 10% accuracy, no computer,] is posed. On a
computer, if you use standard single or double accuracy floating point numerical system, you have
only 8 or 16 signigicant [decimal] digits, while in order to find out where 10100 is inside the period of
tan(·), you need to know π with no less than 100 digits.

[...]/teaching/2019-4/math_575a/notes/C$ cat size_of.c
#include <stdio.h>
int main() { printf("sizeof( float ) = %2lu\n", sizeof(float));

printf("sizeof( double ) = %2lu\n", sizeof(double));
printf("sizeof(long double) = %2lu\n", sizeof(long double)); return 0; }

[...]/teaching/2019-4/math_575a/notes/C$ cc size_of.c
[...]/teaching/2019-4/math_575a/notes/C$ ./a.out
sizeof( float ) = 4
sizeof( double ) = 8
sizeof(long double) = 16
[...]/teaching/2019-4/math_575a/notes/C$

The C type long double is non-standard, and its size could be anything starting at 8 bytes. In 90s
personal computers its size was typically 8 bytes. Later it was sometimes 12 bytes. FORTRAN has
real*16 and complex*32 types, but [if you have concerns about the speed] you may check whether
they are natively supported. Even with 16 bytes you get about 30 < 100 digits. There is a lot of
software to work with arbitrary- or multiple-precision, allowing very large integers and floats having
plenty of significant digits.17 Here is tan(10100) being calculated by Wolfram|Alpha and GP/PARI:

[...]/teaching/2019-4/math_575a/notes/gp-pari$ gp
[... technical stuff ...]

GP/PARI CALCULATOR Version 2.11.1 (released)
[... copyright notice and links ...]
parisize = 8000000, primelimit = 500000, nbthreads = 4
? tan(10ˆ100)

17 GNU MP, UBASIC, mpmath, and many, many more.
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%1 = 0.40123196199081435418575434365329495832
? tan(10.ˆ100.)

*** at top-level: tan(10.ˆ100.)

*** ˆ-------------

*** tan: precision too low in mpcosm1.

*** Break loop: type ’break’ to go back to GP prompt
break> break

? \p 120
realprecision = 134 significant digits (120 digits displayed)

? tan(10ˆ100)
%2 = 0.40123196199081435418575434365329495832387026112924406831944153811687180982
2119121146726730974932083113492712621181822475
? tan(10.ˆ100.)
%3 = 0.40123196199081435418575434365329431547967876097344489380489940895672341186
4441328951791123274926250333504377945214070810
? \p 220

realprecision = 231 significant digits (220 digits displayed)
? tan(10ˆ100)
%4 = 0.40123196199081435418575434365329495832387026112924406831944153811687180982
211912114672673097493208311349271262118182247468378149091725522386243554917465545
72278444011172023509553194989577824397574359217596118498629727863
? tan(10.ˆ100.)
%5 = 0.40123196199081435418575434365329495832387026112924406831944153811687180982
211912114672673097493208311349271262118182247468378149201640926687195833512454722
66034500751505991421028525329520891978238245005013166636841753125
? quit
Goodbye!
[...]/teaching/2019-4/math_575a/notes/gp-pari$

The expressions tan(10ˆ100) and tan(10.ˆ100.) are parsed differently by GP/PARI, and from the
output for the latter one can deduce that about 100 last digits are wrong, consistently with κ(tan(x)) =
2x/sin(2x)∼ |x| and x = 10100.

Problems and exercises
1. Write a program that calculates the Hilbert curve H(x), 0 ≤ x ≤ 1 (Example 3.2). Compute

H(1/3) and H(1/
√

2) using single and double precision. How many digits are correct?
2. Consider an algorithm f ′h : RRR→ FPFPFPN that estimates the derivative of the function f (which we

can compute at any point in stable way) at x as the finite difference
(

f (x⊕h)	 f (x)
)
�h. Assuming

that f (x) near the point of interest doesn’t have any dramatic features (e.g., f , f ′, f ′′, ... are of the order
of f , f/L, f/L2, ..., where L is characteristic scale of x) find how κ( f ′h) depends on h and εmachine.
Which h would you choose? Estimate f ′(1) for f (x) = 1/(1+ x2) using h = 10−n, n = 0,1,2, ...,17.
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Part II

Numerical Linear Algebra
4 Matrices, singular value decomposition (SVD)

4.1 Matrices, vectors, orthogonality, norms
An m×n matrix is a rectangular table of numbers /matrix elements, with m rows and n columns.

The matrix could originate from writing down in a neat way the coefficients of the system of m linear
equations with n variables; or correspond to a linear transformation CCCn→CCCm.

An m× 1 matrix with just one column is an m-dimensional vector. An m× n matrix could be
viewed as an [ordered] collection of n such vectors /columns. A 1×1 matrix [a ] could be identified
with its only matrix element a as a number.

A matrix element of the matrix Â (B̂, Γ̂, etc.) at ith row and jth column will be denoted as
(Â)i j = ai j (bi j, γi j, ...). We will call a [not necessarily square] m×n matrix Â diagonal, if (Â)i j = 0
whenever i 6= j. A diagonal matrix is fully determined by its diagonal matrix elements, e.g., Â =
diag(a11,a22, ...,all), where l = min(m,n). We will denote m×n zero matrix (all matrix elements are
zero) as Ôm,n, while În = diag(1,1, ...,1) will stand for n×n identity matrix, with (În)i j = δi j.

A dot product or scalar product (making CCCm an inner product space) of two vectors xxx = [xi ] and
yyy = [yi ] is defined as 〈xxx,yyy〉= xxx ·yyy ..= ∑

m
i=1 x∗i yi, where ·∗ stands for complex conjugation. The latter is

needed so that xxx ·xxx=∑i |xi|2 is always a non-negative real. A number ‖xxx‖ ..=
√

xxx ·xxx is called a [L2-norm
or] length of vector xxx. Unit vectors are vectors of length 1. We say two vectors xxx and yyy are othogonal,
if xxx ·yyy = 0. Zero vector 000 is orthogonal to any vector.

For Â : CCCn→CCCm, the adjoint Â† is introduced through 〈Â†xxx,yyy〉 = 〈xxx, Âyyy〉 = ∑
m
i=1 x∗i ∑

n
j=1 ai j y j =

∑
n
j=1 ∑

m
i=1 ai j x∗i y j = ∑

n
j=1
(
∑

m
i=1 a∗i jxi

)∗y j, which gives (Â†) ji = a∗i j, or n×m matrix Â† = (ÂT)∗ is the
complex conjugate of the transpose of Â, or Hermitian conjugate of Â. A [necessarily square] matrix
Â is called Hermitian, if Â† = Â; it is the complex analogue of real symmetric matrix. The dot product
xxx ·yyy is equal to xxx†yyy as a 1×1 matrix, that is the product of 1×m matrix xxx† and m×1 matrix yyy.

We will call an m×n matrix Â unitary or orthogonal, if Â†Â = În. This is not a standard terminol-
ogy.18 19 Necessarily, we have m ≥ n, as rank Â ≤ min(m,n). The statement Â†Â = În simply means
that all columns of Â are unit vectors (the diagonal of În) that are pair-wise orthogonal (off-diagonal
content of În).

In some cases other than “L2” norms are more convenient. Commonly used vector norms are

Lp-norm : ‖xxx‖p
..=
(
|x1|p + |x2|p + ...+ |xm|p

)1/p
, 1≤ p <+∞

L∞-norm : ‖xxx‖∞
..= max

(
|x1|, |x2|, ...|xm|

)
= lim

p→+∞
‖xxx‖p

L0-“not a norm” : ‖xxx‖0
..=
(
number of non-zero components of xxx

)
weighted norm : ‖xxx‖Ŵ ..= ‖Ŵxxx‖, rankŴ = m, arbitrary norm on the right

18 In standard definition, a matrix Û is unitary if it is square, invertible, and Û−1 = Û†.
19 People sometimes consider complex matrices Q̂ such that Q̂−1 = Q̂T, and call them orthogonal. All such matrices

form a Lie group [why?]. Real orthogonal matrices are unitary.
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For matrices / linear transformations /operators most useful are induced or operator norms:

Â : X → Y , ‖Â‖ ..= sup
xxx∈X ,xxx 6=000

‖Âxxx‖in Y
‖xxx‖in X

= sup
xxx∈X ,‖xxx‖in X =1

‖Âxxx‖in Y

When both X and Y are finite dimensional, the operator norm is finite (the transformation is continuos
and the “sphere” ‖xxx‖in X = 1 is compact).

Plenty of other norms in the vector space CCCmn of m×n matrices could be constructed, and some
of them are in use. Let us mention Frobenius or Hilbert–Schmidt norm:

Â = [ai j ], aaa j = [ai j ], ‖Â‖2
F

..=
m

∑
i=1

n

∑
j=1
|ai j|2 =

n

∑
j=1
‖aaa j‖2

2 = tr
(
Â†Â

)
= tr

(
ÂÂ†)= ‖Â†‖2

F

Let Q̂ be an m×n unitary matrix. Then for any xxx ∈CCCn we have ‖Q̂xxx‖2 = ‖xxx‖2. More generally,
for any n× l matrix Â we have ‖Q̂Â‖F = ‖Â‖F.20

4.2 Singular Value Decomposition (SVD)
For clearer geometrical images, let us consider a real m×n matrix Â, and a corresponding linear

transformation Â : RRRn→RRRm. An image of a (n−1)-sphere SSSn−1 ⊂RRRn is an [hyper]ellipsoid (which
could be degenerate) in RRRm, whose principal sizes (or the lengths of the principal semi-axes) and
orientation are important characteristics of Â. Let us denote the jth, 1 ≤ j ≤ m, principal semi-axis
as σjuuu j, where ‖uuu j‖2 = 1, so the semi-axis length is σj ≥ 0. Geometrically, all the semi-axes, i.e.,
uuu-vectors, are orthogonal to each other. (Obviously, no more than n σ’s are non-zero.)

Definition /Theorem 4: Any [real or complex] m×n matrix Â has a [reduced] Singular Value De-
composition (SVD) Â = Û Σ̂V̂ †, where m× l matrix Û and l×n matrix V̂ are unitary, while l× l ma-
trix Σ̂ is real diagonal, with non-negative [and non-increasing] diagonal entries. Here l = min(m,n).21

The diagonal entries of Σ̂ are called singular values, while the columns of the matrix Û / V̂ are called
left /right singular vectors.

Proof [and Algorithm SVDÂ†Â]:22 Let us consider the case m ≥ n (otherwise construct SVD
of Â†, and then Hermite conjugate). Construct the n× n matrix Â†Â. It is Hermitian, thus it is
diagonalizable, with real eigenvalues and orthogonal eigenvectors. It is also positive definite,23 so all
its eigenvalues are non-negative. We can write Â†Â = V̂ Σ̂2V̂ †, where V̂ is n×n unitary matrix; matrix
Σ̂ is n× n real diagonal. We can choose the diagonal entries of Σ̂ to be non-negative. By permuting
the columns of V̂ , we can reorder the diagonal entries of Σ̂ in non-increasing order. The jth column
of Û , the vector uuu j, is set to Âvvv j/σ j if σ j > 0, or chosen arbitrarily from the orthogonal completion
to the previous columns of Û if σ j = 0. We still have to prove two statements: 1) Û is unitary; and
2) Â = Û Σ̂V̂ †.

For 1) we need to show that columns of Û (it is enough to consider only non-zero σ’s) are unit vec-
tors that are orthogonal to each other. We have 〈uuui,uuu j〉 = uuu†

i uuu j = (Âvvvi)
†Âvvv j/σiσ j = vvv†

i Â†Âvvv j/σiσ j =

vvv†
i V̂ Σ̂2V̂ †vvv j/σiσ j = eee†

i Σ̂2eee j/σiσ j = δi j (as Σ̂2 is diagonal).

20 Whenever the product ÛB̂V̂ † is defined, and the matrices Û and V̂ are unitary, we have ‖ÛB̂V̂ †‖F = ‖B̂‖F.
21 Not so rarely considered full SVD is a factorization Â = Û Σ̂V̂ †, where square m×m matrix Û and n× n matrix V̂

are unitary, and m×n matrix Σ̂ is diagonal (with non-negative numbers on the main diagonal).
22 For a different proof, see [TrBa97, Theorem 4.1, p. 29].
23 For any vector vvv we have 〈vvv, Â†Âvvv〉= vvv†Â†Âvvv = (Âvvv)†Âvvv = ‖Âvvv‖2

2 ≥ 0.
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For 2), vectors vvv j, j = 1, ...,n, form a basis of CCCn [why?], so any vector vvv ∈CCCn is a [unique] linear
combination of them. It is enough to check Âvvv j = Û Σ̂V̂ †vvv j = Ûσ jeeej = σ juuu j for all 1 ≤ j ≤ n. If
σ j > 0, then we have Âvvv j = σ juuu j by construction of uuu j. If σ j = 0, then vvv†

j Â
†Âvvv j = σ2

j = 0 = ‖Âvvv j‖2
2,

thus Âvvv j = 000 = σ juuu j.
Once the singular values are ordered, the matrix Σ̂ is unique. For any j we can multiply vvv j by

any number c with absolute value |c|= 1 (only c =−1 is interesting in real case), and both ‖vvv j‖2 and
‖Âvvv j‖2 are not going to change. For some matrices (when singular values coincide) the choice for V̂
is even richer. I.e., for any square unitary matrix V̂ we have Î = V̂ †V̂ as the SVD of the identity matrix
Î. Generally, we can make an arbitrary unitary rotation of V̂ ’s (and simultaneously of Û’s) part that
corresponds to the same singular value.

Example 4: Consider the matrix on the right. Both of its eigenvalues are
equal to 1. Let us proceed with the SVD of Â in Octave24 and on paper:

Â =

[
1 1
0 1

]
[...]/teaching/2019-4/math_575a/notes/Octave$ octave-cli
GNU Octave, version 4.2.1
[... copyright notice and links ...]
octave:1> format long
octave:2> A = [1, 1; 0, 1]
A =

1 1
0 1

octave:3> [U, S, V] = svd(A)
U =

0.850650808352040 -0.525731112119134
0.525731112119134 0.850650808352040

S =

Diagonal Matrix

1.618033988749895 0
0 0.618033988749895

V =

0.525731112119134 -0.850650808352040
0.850650808352040 0.525731112119134

octave:4> B = U * S * V’
B =

1.00000000000000e+00 1.00000000000000e+00
1.11022302462516e-16 1.00000000000000e+00

octave:5>

Â†Â =

[
1 1
1 2

]

det
(
λÎ2− Â†Â

)
= λ

2−3λ+1

σ2
1,2 = λ1,2 =

1
2

(
3±
√

5
)

σ1,2 =
√

λ1,2 =
1
2

(√
5±1

)
= ϕ±1

Â†Â
[

1
ϕ

]
︸ ︷︷ ︸√
1+ϕ2 vvv1

=
(
ϕ

2 = σ
2
1
)[ 1

ϕ

]
note: 1+ϕ = ϕ2

uuu1 =
Âvvv1

σ1
=

[
1 1
0 1

][
1
ϕ

]
ϕ
√

1+ϕ2
=

[
ϕ

1

]
√

1+ϕ2

find vvv2 and uuu2 in a similar way, or from orthogonality

24 MATLAB R© is a commercial software, see MathWorks MATLAB licensing for UA Faculty, Staff & Students.
GNU Octave is one of several (less effective) free alternatives to MATLAB, with mostly compatible syntax.
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The Algorithm SVDÂ†Â is good for pen and paper calculations, but it is not numerically stable.
The problem of diagonalization of Â†Â has condition number κ2(Â), instead of κ(Â).

We will not discuss numerical algorithms for the computation of SVD in detail. See, e.g., [GoVa96,
Sec. 8.6] and [Dem97, Sec. 5.4].

Here are some properties of SVD (here Â is an m×n matrix, and l = min(m,n)):

Â =
l

∑
i=1

σiuuuivvv
†
i , ‖Â‖2

F =
l

∑
i=1

σ
2
i , ‖Â‖2 = σ1,

〈〈〈
σ1,uuu1,vvv1

〉〉〉
= argmin
〈〈〈σ1,uuu1,vvv1〉〉〉

‖Â−σ1uuu1vvv†
1‖F

Â↓ ..= Â−σ1uuu1vvv†
1,

(
Â↓
)
↓ = Â−σ1uuu1vvv†

1−σ2uuu2vvv†
2, σ1(Â↓) = σ2(Â)

r

∑
i=1

σiuuuivvv
†
i is the best approximation (in ‖ · ‖2 and ‖ · ‖F norms) of Â by any matrix of rank r ≤ l

∣∣det Â
∣∣= l=m=n

∏
i=1

σi, if Â = Â†, then its diagonalization is almost (up to signs of λ’s) its SVD

4.3 Condition number of multiplication by a matrix
Consider a fixed m×n matrix Â. What is the [relative] condition number κ(Â·) of the problem of

multiplying a vector by Â?25

If n > m or the matrix Â is not of full rank, then it has a non-trivial null space. Any errors in
the computation of Âxxx = 000 for xxx ∈ null(Â) would be considered infinite in relative sense, and thus
κ(Â·) = ∞ by definition. Otherwise we have

κ(Â·,xxx) = max
εεε

sensitivity to xxx︷ ︸︸ ︷
‖Â(xxx+εεε)− Âxxx‖

‖εεε‖︸ ︷︷ ︸
‖Â‖=σ1

‖xxx‖
‖Âxxx‖

, κ(Â·) ..= max
xxx

κ(Â·,xxx) = σ1

σn

The denominator σn came from maximizing the ratio ‖xxx‖/‖Âxxx‖.

Problems and exercises
1. Two norms ‖ · ‖I and ‖ · ‖II are called equivalent if there exist constants 0 < C1 ≤ C2 such

that C1‖xxx‖I ≤ ‖xxx‖II ≤C2‖xxx‖I for all xxx. (a) Show that any two norms in RRRm are equivalent. (b) Find
constants C1 and C2 for any pair from ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ norms.

2. Consider two operators Â : X → Y and B̂ : Y → Z, where the vector spaces X , Y , and Z are
normed. For induced norms, show that ‖B̂Â‖ ≤ ‖Â‖‖B̂‖.

3. Consider “dot product with uuu” operator uuu† : CCCn→CCC, where xxx 7→ uuu ·xxx = uuu†xxx. Find its (a) induced
L2-norm and (b) Frobenius norm.

4. Consider “multiplying by uuu” operator uuu : CCC→CCCm, where x 7→ xuuu. Find its (a) induced L2-norm
and (b) Frobenius norm.

5. Let Â be an m×n matrix, with an SVD Â = Û Σ̂V̂ †. Find the SVD of Â†.
6. Let Â be an m×n matrix. Consider (m+n)× (m+n) Hermitian matrix B̂ ..=

[
Ôn,n Â†

Â Ôm,m

]
.

How the singular values of Â and the eigenvalues of B̂ are connected?
7. Show that m×n, m≥ n, matrix is unitary if and only if all of its singular values are equal to 1.

25 The so called condition number κ(Â) of a matrix Â is defined in a similar but slightly different way: κ(Â) =
‖Â‖2‖Â+‖2, where Â+ is the Moore–Penrose pseudoinverse of Â.
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5 Systems of linear equations
Consider a system of linear equations Âxxx = bbb, with m×n matrix Â. A way to interpret the system,

which is often good while thinking theoretically, is: Â is the matrix of a linear transformation CCCn→
CCCm, and we try to find such vector xxx ∈CCCn that is transformed to bbb, i.e., Â : xxx 7→ bbb.

Let us assume for simplicity that Â is a full rank m×m matrix. Interpreting the system in way I),
the solution could be found by computing the inverse matrix and reversing the transformation Â:

Algorithm Â−1bbb: Input: Â and bbb. Output: xxx ..= Â−1bbb, i.e., you compute the inverse matrix Â−1 and
multiply the r.h.s. bbb by it.

Example 5: “Failure” of Â−1bbb in case of poorly conditioned matrix Â.

octave:1> format long
octave:2> A = [1 sqrt(2); sqrt(3) sqrt(6) + 1.e-13]
A =

1.000000000000000 1.414213562373095
1.732050807568877 2.449489742783278

octave:3> cond(A)
ans = 119564591877097.7
octave:4> B = inverse(A)
B =

24496352586638.59 -14142975760059.20
-17321537028348.06 10000594066094.83

octave:5> b = [sqrt(3); 3]
b =

1.732050807568877
3.000000000000000

octave:6> x = A \ b
x =

1.721172241704469e+00
7.692307692307693e-03

octave:7> y = B * b
y =

1.726562500000000e+00
3.906250000000000e-03

octave:8> A * x - b
ans =

-2.220446049250313e-16
0.000000000000000e+00

octave:9> A * y - b
ans =

Â =

[
1

√
2√

3
√

6+10−13

]

σ1 ∼ 1 and σ1σ2 = det Â = 10−13

bbb =

[ √
3

3

]

solution by \ (or mldivide) operator

solution by Algorithm Â−1bbb
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3.596415914275397e-05
6.229175088678929e-05

octave:10> A * [sqrt(3); 0] - b
ans =

0.000000000000000e+00
-4.440892098500626e-16

octave:11>

residual Â(Â−1bbb)−bbb is not too small

xxx =
[ √

3
0

]
is exact solution

Â−1bbb solution is numerically closer to it than solution by \,
but Â−1bbb provides orders of magnitude larger residual

This is a [forward] stable, but not a backward stable algorithm. The vector xxx is not far from the exact
solution, but the discrepance is such that it is not very plausible:

x1

x1

x1

x2

Â\bbb

Â−1bbb xxxCramer′s

xxxexact

Â−1bbb

xxxGE

x̃̃x̃xexact

Â\bbb

x2 x2

0

0.005

0.01

1.72 1.725 1.73 1.735

0.0035

0.004

1.7265 1.727

0.0075

0.008

1.7205 1.721 1.7215

15× 15×

Here the thick line is xxxexact + tvvv2, where vvv1 ≈
[

1
√

2
]T
/
√

3 and vvv2 ≈
[√

2 −1
]T
/
√

3 are the right
singular vectors of Â. The vector Â−1bbb−xxxexact has some vvv1 component, which gives rise to not so
small residual Â(Â−1bbb)−bbb.

Let us take the matrix Â and the r.h.s. bbb, put them into a computer with double precision (also
solve Âxxx = bbb by Gaussian elimination for illustration), and then exactly solve the system of 2 linear
equations with floating point number representations of Â and bbb, thinking about them as exact input:

[...]/teaching/2019-4/math_575a/notes$ cat C/A_x_eq_b.c
#include <stdio.h>
#include <math.h>
void print_bits(double x, char* s) { int i; unsigned char c;
for (i = 0; i < 8; i++) for (c = 128; c != 0; c >>= 1)

if (*((char *)(&x) + 7 - i) & c) printf("1"); else printf("0");
printf(" %s\n", s); }

int main() { int i; double A[2][2], b[2], x[2], det, G[2][2], x52;
A[0][0] = 1.; A[0][1] = sqrt(2.); /* Example 5 */
A[1][0] = sqrt(3.); A[1][1] = sqrt(6.) + 1.e-13;
print_bits(A[0][0], "a_11"); print_bits(A[0][1], "a_12");
print_bits(A[1][0], "a_21"); print_bits(A[1][1], "a_22");
b[0] = sqrt(3.); b[1] = 3.;
print_bits(b[0], "b_1"); print_bits(b[1], "b_2");

printf("|\\___ ____/\\_________________________ _______________________/\n");
printf("| \\/ \\/\n");
printf("sign exponent (11 bits) fraction (52 bits)\n\n");

x52 = 1.; for (i = 0; i < 52; i++) x52 *= 2.; /* x52 = 2ˆ52 */
printf("a_12 = %18.1f / 2ˆ52, a_21 = b_1 = %18.1f / 2ˆ52\n",
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x52 * A[0][1], x52 * A[1][0]);
printf("a_11 = 1, b_2 = 3, a_22 = %18.1f / 2ˆ52\n\n", x52 * A[1][1]);

printf("solution by Cramer’s rule:\n");
det = 1. / (A[0][0] * A[1][1] - A[0][1] * A[1][0]);
x[0] = (b[0] * A[1][1] - b[1] * A[0][1]) * det;
x[1] = (A[0][0] * b[1] - A[1][0] * b[0]) * det;
printf(" x = [%22.16e %22.16e]ˆT\n", x[0], x[1]);
printf(" residual A * x - b: [%e %e]ˆT\n", x[0] + A[0][1] * x[1] - b[0],
A[1][0] * x[0] + A[1][1] * x[1] - b[1]);

printf("solution Aˆ(-1) b:\n");
G[0][0] = A[1][1] * det; G[0][1] = -A[0][1] * det;
G[1][0] = -A[1][0] * det; G[1][1] = A[0][0] * det;
x[0] = G[0][0] * b[0] + G[0][1] * b[1];
x[1] = G[1][0] * b[0] + G[1][1] * b[1];
printf(" x = [%22.16e %22.16e]ˆT\n", x[0], x[1]);
printf(" residual A * x - b: [%e %e]ˆT\n", x[0] + A[0][1] * x[1] - b[0],
A[1][0] * x[0] + A[1][1] * x[1] - b[1]);

printf("solution by Gaussian elimination with complete pivoting:\n");
G[1][0] = A[1][0] / A[1][1]; x[1] = b[1] / A[1][1];
G[0][0] = A[0][0] - A[0][1] * G[1][0]; x[0] = b[0] - A[0][1] * x[1];
x[0] /= G[0][0]; x[1] -= G[1][0] * x[0];
printf(" x = [%22.16e %22.16e]ˆT\n", x[0], x[1]);
printf(" residual A * x - b: [%e %e]ˆT\n", x[0] + A[0][1] * x[1] - b[0],
A[1][0] * x[0] + A[1][1] * x[1] - b[1]);

return 0; }
[...]/teaching/2019-4/math_575a/notes$ cc C/A_x_eq_b.c -lm ; ./a.out
0011111111110000000000000000000000000000000000000000000000000000 a_11
0011111111110110101000001001111001100110011111110011101111001101 a_12
0011111111111011101101100111101011101000010110000100110010101010 a_21
0100000000000011100110001000111000010100000010010010001000001111 a_22
0011111111111011101101100111101011101000010110000100110010101010 b_1
0100000000001000000000000000000000000000000000000000000000000000 b_2
|\___ ____/\_________________________ _______________________/
| \/ \/
sign exponent (11 bits) fraction (52 bits)

a_12 = 6369051672525773.0 / 2ˆ52, a_21 = b_1 = 7800463371553962.0 / 2ˆ52
a_11 = 1, b_2 = 3, a_22 = 11031521092846622.0 / 2ˆ52

solution by Cramer’s rule:
x = [1.7321428571428570e+00 4.4642857142857140e-03]ˆT
residual A * x - b: [6.405503e-03 1.109466e-02]ˆT

solution Aˆ(-1) b:
x = [1.7265625000000000e+00 3.9062500000000000e-03]ˆT
residual A * x - b: [3.596416e-05 6.229175e-05]ˆT

solution by Gaussian elimination with complete pivoting:
x = [1.7267759562841529e+00 3.7298831131791221e-03]ˆT
residual A * x - b: [0.000000e+00 0.000000e+00]ˆT

[...]/teaching/2019-4/math_575a/notes$ gp
[... technical stuff ...]

GP/PARI CALCULATOR Version 2.11.1 (released)
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[... copyright notice and links, technical parameters ...]
? a11 = 2ˆ52; a12 = 6369051672525773; a21 = b1 = 7800463371553962; a22 = 1103152
1092846622; b2 = 3 * a11; det = a11 * a22 - a12 * a21
%1 = 2021703648790801886
? x1 = (b1 * a22 - b2 * a12) / det
%2 = 102697713703618710/59461872023258879
? x2 = (a11 * b2 - a21 * b1) / det
%3 = 3525341537980302/1010851824395400943
? 1. * x1
%4 = 1.7271187436454719105197015986197581099
? 1. * x2
%5 = 0.0034874958454854040546168999582954249611

The exact solution, x̃̃x̃xexact ≈
[

1.7271 0.0035
]T, of the “computerized” system (i.e., how it looks

like after the input data Â and bbb are put into FPFPFP52), is as different from non-computerized xxxexact =[ √
3 0

]T as solutions obtained by Gaussian elimination, xxxGE ≈
[

1.7268 0.0037
]T, or mldivide

operator, Â\bbb≈
[

1.7212 0.0077
]T.

5.1 System with orthogonal matrix
Consider a system Q̂xxx = bbb, where Q̂ is an m×m orthogonal or unitary matrix. The solution is

xxx ..= Q̂†bbb, which could be viewed as the one obtained by the Algorithm Â−1bbb (we have Q̂−1 = Q̂†).
Here the matrix of the system Q̂ is well conditioned though, κ(Q̂·) = 1. The L2-norm of the residual
is small:

∥∥Q̂
(
num(Q̂†)� num(bbb)

)
−bbb
∥∥

2 =
∥∥(num(Q̂†)� num(bbb)

)
− Q̂†bbb

∥∥
2 — we have Q̂Q̂† = Îm,

and multiplying a vector by unitary matrix Q̂† doesn’t change its L2-norm.

5.2 System with triangular matrix (see [TrBa97, Lec. 17])

Consider a system R̂xxx =bbb, where R̂ is an n×n upper triangular matrix, i.e., ri j = 0 whenever i > j.
We assume that det R̂ = r11r22...rnn 6= 0, i.e., the solution does exist and is unique. It can be found by
a procedure called back substitution (the matrix of the system is already in echelon form, i.e., most of
the work of excluding variables is done): the last equation means rnnxn = bn, so we immediately find
xn

..=bn/rnn. In the equation rn−1,n−1xn−1+rn−1,nxn = bn−1 only xn−1 is unknown, so we immediately
find it: xn−1 = (bn−1− rn−1,nxn)/rn−1,n−1. Next we find xn−2, and so on, till we finally find x1.

Algorithm “Back Substitution”: Input: upper triangular matrix R̂ and the r.h.s. bbb. Output: vector
xxx, computed according to the following pseudo-code:
for i = n, n−1, ..., 2, 1 do

B ..= bi
for j = n, n−1, ..., i+1 do (do nothing if n < i+1, i.e., if i = n)

B ..= B	 (ri j� x j)
xi

..= B� rii
return xxx

Alternatively, one can go from i+ 1 to n in for loop over j. There are n(n− 1)/2 multiplications
r� x, n(n−1)/2 subtractions B	 (rx), and n divisions B� r; overall n2 floating point operations.

The pseudo-code could be written in a different form (which ruins the input vector bbb, though):
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for i = n, n−1, ..., 2, 1 do

xi
..= bi� rii

for j = i−1, i−2, ..., 1 do (do nothing if i−1 < 1, i.e., if i = 1)

b j
..= b j	 (r ji� xi)

return xxx

Theorem 5: The Algorithm “Back Substitution” is backward stable. Moreover, we can interpret
the output as the exact solution for the problem (R̂+∆R̂)xxx = bbb with ‖∆R̂‖ ∼ εmachine‖R̂‖, i.e., we
need to slightly change only the matrix R̂, with the r.h.s. bbb being untouched. Moreover, we can
show that ∆ri j ∼ εmachineri j, i.e., we can choose the matrix ∆R̂ in such a way, that each of its matrix
elements is a small, ∼ εmachine, change of the corresponding matrix element of R̂. More specifically,∣∣(∆ri j)/ri j

∣∣≤ (n+1− j)εmachine +O(ε2
machine).

26

Proof : Consider the case n = 3 and the calculation of x1:

x1
..=
((

b1	 (r13� x3)
)
	 (r12� x2)

)
� r11

x1 =
((

b1− r13x3(1+ ε13)
)
(1+δ13)− r12x2(1+ ε12)

)
(1+δ12) ·

(1+η1)

r11

Here |εi j|, |δi j|, and |ηi| are all not greater than εmachine: ε’s are numerical errors introduced in calcu-
lation ri jx j, δ’s are introduced while doing subtractions, and η’s are due to divisions. The formula for
x1 could be rewritten as

x1 =
b1− r13x3(1+ ε13)− r12x2(1+ ε12)(1+δ13)

−1

r11(1+η1)−1(1+δ12)−1(1+δ13)−1

Whenever we are doing subtraction, we push the numerical error as a change in r’s on the left. Each
non-diagonal r has potential need for change due to rx multiplications. Diagonal r’s have additional
potential need to change due to divisions.

Whenever we present the matrix Â of the system Âxxx = bbb as the product of unitary or triangular
(partial case: diagonal) matrices, Â = Â1Â2...Âk, we can find xxx as follows: First, solve Â1y1y1y1 = bbb. This
is easy, we have yyy1 = Â†

1bbb, if Â1 is unitary; or we find yyy1 by back (Â1 is upper triangular) or by forward
(Â1 is lower triangular, you subsequently find components of yyy1 from the first to the last) substitution.
Then we solve Â2yyy2 = yyy1, Â3yyy3 = yyy2, and so on. Finally, we deal with Âkxxx = yyyk−1. We have

bbb = Â1

(
yyy1 = Â2

(
y2y2y2 = Â3

(
yyy3 = ...Âk−1(yyyk−1 = Âkxxx)

)))
, bbb = Â1Â2...Âkxxx = Âxxx

The commonly used factorizations of Â are:

QR factorization : Â = Q̂R̂, Q̂ is unitary, R̂ is upper triangular

with column pivoting : Â = Q̂R̂P̂, P̂ is [column] permutation matrix

Gaussian elimination, LU factorization : Â = L̂Û , L̂ / Û is lower / upper triangular

with partial pivoting : Â = P̂L̂Û , P̂ is [row] permutation matrix

with complete pivoting : Â = P̂L̂ÛQ̂, Q̂ is [column] permutation matrix

26 This is a different pattern or εmachine-perturbations of R̂ than the one given in [TrBa97, p. 126], because there ri jx j
terms are subtracted from bi in different order (from left to right).
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Problems and exercises
1. Consider the system Âxxx = bbb, where

Â = Û Σ̂V̂ † =

[
0.8 −0.6
0.6 0.8

][
1 0
0 ε

][
0.6 0.8
−0.8 0.6

]
, bbb =

[
4
3

]
Find xxx analytically. Solve the system numerically for ε = k · 10−14, k = 1,2, ...,10, by 1) computing
Â, then applying the Cramer’s rule; 2) xxx ..= V̂ Σ̂−1Û†bbb. Plot all 20 numerical solutions on one plot.

6 QR factorization
Definition /Theorem 6: Any [real or complex] m× n, m ≥ n, matrix Â has a [reduced] QR fac-

torization Â = Q̂R̂, where m×n matrix Q̂ is unitary, while n×n matrix R̂ is upper triangular.27 If Â is
of full rank, i.e., rank Â = n, then there is only one QR factorization with [strictly] positive diagonal
entries of R̂.

Proof: Matrices Q̂ and R̂ could be produced by the Gram–Schmidt process. In case of full rank,
the columns of Q̂ are defined up to a multiplicative factor with absolute value equal to 1, which is
uniquely set if one requires rii > 0 for all 1≤ i≤ n.

There are two major approaches for obtaining the QR factorization of a matrix (here Â is an m×n
matrix with m ≥ n, on schematic pictures the long/short sides have lengths m /n). One strategy,
employed in Gram–Schmidt process, is to apply “upper triangular” column operations to matrix Â, in
order to make it unitary:

Â În −→

︸ ︷︷ ︸
Q̂k

︸ ︷︷ ︸
R̂k

Q̂k−1 Ûk−1 Û−1
k R̂k−1 −→ Q̂ R̂

Q̂ = ÂÛ1Û2Û3... R̂ = ...Û−1
3 Û−1

2 Û−1
1

Another strategy, employed in Householder reflections and Givens rotations methods, is to act by
unitary matrices V̂1, V̂2, V̂3, ..., on the matrix Â until it becomes upper triangular:

Îm Â −→

︸ ︷︷ ︸
Q̂k

︸ ︷︷ ︸
R̂k

Q̂k−1 V̂ †
k V̂k R̂k−1 −→ Q̂ R̂

Q̂ = V̂ †
1 V̂ †

2 V̂ †
3 ... R̂ = ...V̂3V̂2V̂1Â

27 A full QR factorization is Â = Q̂R̂, where square m×m matrix Q̂ is unitary, and m×n matrix R̂ is upper triangular
(with zero matrix elements below the main diagonal).
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6.1 Gram–Schmidt process
Algorithms “Classical / Modified Gram–Schmidt”: Input: m×n matrix Â, m≥ n. Output: m×n

unitary matrix Q̂ and n× n upper triangular matrix R̂, such that Â = Q̂R̂, according to the following
pseudo-code:28

classical Gram–Schmidt
for j = 1, 2, ..., n do

qqq j
..=aaa j

for i = 1, 2, ..., j−1 do modification
ri j

..=qqq†
i aaa j −→ ri j

..=qqq†
i qqq j −→

qqq j
..=qqq j− ri jqqqi

r j j
..= ‖qqq j‖2

qqq j
..=qqq j/r j j

return Q̂, R̂

modified Gram–Schmidt29

for i = 1, 2, ..., n do

rii
..= ‖aaai‖2

aaai
..=aaai/rii

for j = i+1, i+2, ..., n do

ri j
..=aaa†

i aaa j
aaa j

..=aaa j− ri jaaai
return Â, R̂

On the right is the pseudo-code for Modified Gram–Schmidt that is equivalent (just operations are
done in different order) to the algorithm after ri j

..=qqq†
i aaa j→ qqq†

i qqq j modification.

Example 6: Let us compute the QR factorization of Â using both classical
(cGS) and modified (mGS) Gram–Schmidt methods. We will assume that ε2�
εmachine � ε in our calculations (i.e., we will drop ε2 terms when added to
something of the order of 1).

Â=


1 1 1
ε 0 0
0 ε 0
0 0 ε


The 1st column is already as good as normalized (‖aaa1‖2

2 = 1+ ε2 ≈ 1), so
r11 = 1 and qqq1 = aaa1. We have r12 = qqq†

1aaa2 = 1, and r22 =
√

2ε, qqq2 =
[

0 −1 1 0
]T
/
√

2 — so
far there is no difference between classical and modified versions of the Gram–Schmidt processes.
Now in classical version we have r13 = qqq†

1aaa3 = aaa†
1aaa3 = 1 and r23 = qqq†

2aaa3 = 0, so we get r33 =
√

2ε,
qqq3 =

[
0 −1 0 1

]T
/
√

2. The cGS QR factorization is

Q̂cGS =


1 0 0
ε −1/

√
2 −1/

√
2

0 1/
√

2 0
0 0 1/

√
2

 , R̂cGS =

 1 1 1
0
√

2ε 0
0 0

√
2ε


Indeed, we have Q̂cGSR̂cGS = Â, but the matrix Q̂cGS is far from unitary: qqqcGS,2 ·qqqcGS,3 = 1/2 6= 0.

In modified version we have r13 = 1, and the column aaa3 is then orthogonalized to qqq1, becoming[
0 −ε 0 ε

]T. Only after that it is attempted to be orthogonalized to qqq2: we have r23 = ε/
√

2, the

28 If for some 1 ≤ i ≤ n the matrix element rii is computed to be 0, then qqqi is arbitrarily chosen from unit vectors
orthogonal to qqq1, qqq2, ..., qqqi−1. E.g., [

4 5.6
3 4.2

]
=

[
0.8 −0.6
0.6 0.8

][
5 7
0 0

]
Here, as aaa2 = 7qqq1, the matrix element r22 ends up to be zero, so qqq2 is chosen to be orthogonal to qqq1.

29 If we do not want to overwrite Â, then we can copy Â at the start of the algorithm and do calculations with the copy.
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subtraction of r23qqq2 brings the 3rd column to
[

0 −ε/2 −ε/2 ε
]T. Finally, we get

Q̂mGS =


1 0 0
ε −1/

√
2 −1/

√
6

0 1/
√

2 −1/
√

6
0 0 2/

√
6

 , R̂mGS =

 1 1 1
0
√

2ε ε/
√

2
0 0

√
3/2ε


The matrix Q̂mGS is much closer to be unitary than Q̂cGS, the dot products qqqmGS,1 ·qqqmGS,2 and qqqmGS,1 ·
qqqmGS,3 are small, of the order of ε, but still non-zero.

6.2 Householder reflections
Consider the following problem: You have a vector xxx∈CCCm. Find a unitary transformation V̂ would

transform xxx to a vector yyy with only non-zero component being the 1st one? (We have |y1|= ‖xxx‖2 then.)
There are many such transformations, and some of them are [Householder] reflections through a

hyperplane orthogonal to vvv = xxx− eiθ‖xxx‖eee1, i.e., V̂ = Îm−2vvvvvv†/‖vvv‖2. We have V̂ † = V̂ , and

V̂ †V̂ = (Îm−2vvvvvv†/‖vvv‖2)(Îm−2vvvvvv†/‖vvv‖2) = Îm−4vvvvvv†/‖vvv‖2 +4vvvvvv†vvvvvv†/‖vvv‖4 = Îm

Thus, V̂ is unitary. It transforms vector xxx to

V̂xxx = xxx−2vvvvvv†xxx/‖vvv‖2 = xxx−2vvv(‖xxx‖2− e−iθ‖xxx‖x1)/‖vvv‖2 =

=
((

2‖xxx‖2− x∗1eiθ‖xxx‖− x1e−iθ‖xxx‖︸ ︷︷ ︸
‖vvv‖2

)
xxx−2

(
xxx− eiθ‖xxx‖eee1︸ ︷︷ ︸

vvv

)(
‖xxx‖2− e−iθ‖xxx‖x1︸ ︷︷ ︸

vvv†xxx

))
/‖vvv‖2

In order for V̂xxx to be proportional to eee1, we need to have e2iθ = x1/x∗1, i.e., θ = argx1 or θ = argx1+π.
Definition 6: A Householder reflection for vector xxx∈CCCm is one of the two unitary transformations

Ĥ±(xxx) ..= Îm−2vvv±vvv†
±/‖vvv±‖2, where vvv± ..=xxx±

(
x1/|x1|

)
‖xxx‖eee1.30 We have Ĥ±(xxx)xxx =∓

(
x1/|x1|

)
‖xxx‖eee1.

Householder QR factorization
for i = 1, 2, ..., n do

xxx ..= Âi:m,i (m− i+1)×1 matrix or a vector
vvvi

..=xxx±
(
x1/|x1|

)
‖xxx‖eee1 + sign is better for numerical stability

vvvi
..=vvvi/‖vvvi‖2 normalize, so we don’t need to divide by ‖vvvi‖2

2 later

Âi:m,i:n
..= Âi:m,i:n−2vvvi(vvv

†
i Âi:m,i:n)

return Â, vvv1, vvv2, ..., vvvn

The vectors vvv1, vvv2, ..., vvvn could be used to reconstruct the matrix Q̂.

Example 6, continued: Let us now compute the QR factorization of Â by Householder reflections.
For the 1st column the Householder reflector H− is formed from the vector vvv− =

[
1 ε 0 0

]T−√
1+ ε2

[
1 0 0 0

]T
=
[

0 ε 0 0
]T. Thus Ĥ−(aaa1) reflection is just changing the sign of the 2nd

component. We have Ĥ−(aaa1)aaa1 =
[

1 −ε 0 0
]T, i.e., not all components below the 1st one become

zero. That is because in our computation the small vector vvv− is resulted in almost cancellation of two
close vectors, so the direction of vvv− suffers from large numerical errors.

30 If x1 = 0, then x1/|x1| could be set to any number with absolute value 1 (e.g., the number 1).
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We have vvv+ =
[

2 ε 0 0
]T, and

Ĥ+(aaa1)Â =

(
Î4−2

vvv+vvv†
+

‖vvv+‖2 = 4

)
Â =


−1 −ε 0 0
−ε 1 0 0

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

V̂1


1 1 1
ε 0 0
0 ε 0
0 0 ε

=


−1 −1 −1

0 −ε −ε

0 ε 0
0 0 ε


︸ ︷︷ ︸

R̂1

Then, for the 2nd column we have xxx =
[
−ε ε 0

]T, vvv+ = ε
[
−(
√

2+1) 1 0
]T, and

V̂2V̂1Â = V̂2R̂1 =


1 0 0 0
0 −1/

√
2 1/

√
2 0

0 1/
√

2 1/
√

2 0
0 0 0 1


︸ ︷︷ ︸

V̂2


−1 −1 −1

0 −ε −ε

0 ε 0
0 0 ε


︸ ︷︷ ︸

R̂1

=


−1 −1 −1

0
√

2ε ε/
√

2
0 0 −ε/

√
2

0 0 ε


︸ ︷︷ ︸

R̂2

Finally, for the 3rd column we have xxx =
[
−ε/
√

2 ε
]T, vvv+ = ε

[
−(
√

3+1)/
√

2 1
]T, and

V̂3V̂2V̂1Â = V̂3R̂2 =


1 0 0 0
0 1 0 0
0 0 −1/

√
3
√

2/3
0 0

√
2/3 1/

√
3


︸ ︷︷ ︸

V̂3


−1 −1 −1

0
√

2ε ε/
√

2
0 0 −ε/

√
2

0 0 ε


︸ ︷︷ ︸

R̂2

=


−1 −1 −1

0
√

2ε ε/
√

2
0 0

√
3/2ε

0 0 0


︸ ︷︷ ︸

R̂

6.3 Givens rotations

[
c s
−s c

][
a
b

]
=

[
r
0

]
where r =

√
a2 +b2, and (c,s) = (a,b)/r. We have c = cosϕ and s = sinϕ, where ϕ = atan2(b,a).

Problems and exercises
1. Compute the QR factorization of Â using both classical and

modified Gram–Schmidt methods, and by Householder reflections.
Assume that ε2� εmachine� ε in your calculations (i.e., drop ε2 terms
when added to something of the order of 1).

Â =

 3 3+4ε 7
4 4−3ε 1
5ε −7ε −12


2. Write programs that compute the QR factorization Â= Q̂R̂ of a matrix by classical and modified

Gram–Schmidt methods, and by Householder reflections (with generation of the matrix Q̂). Test them
(how big is the residual Â− Q̂R̂, how close is Q̂†Q̂ to the identity matrix) on 10× 10 Hilbert matrix
Ĥi j = 1/(i+ j−1).

3. Consider 1001× 5 matrix Â with Ai j = x j−1
i exp(−x2

i /2), where xi = 0.01(i− 501), 1 ≤ i ≤
1001, 1 ≤ j ≤ 5. Find the QR factorization Â = Q̂R̂ by Gram–Schmidt method, and plot the vectors
qqq j/
√

0.01 = 10qqq j, 1≤ j ≤ 5 as functions of xi.31

31 The result is related to Hermite functions [and Hermite polynomials].
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4. Consider Lie groups of all complex / real invertible n× n matrices GL(n,CCC) /GL(n,RRR). They
contain subgroups of all unitary /orthogonal matrices U(n) /O(n) and all complex / real upper triangu-
lar matrices with strictly positive diagonal entries T+(n,CCC) /T+(n,RRR). Find [real] dimensions of all
the 6 mentioned Lie groups. Calculate dimGL(n,CCC)−dimU(n)−dimT+(n,CCC) and dimGL(n,RRR)−
dimO(n)−dimT+(n,RRR).

7 Gaussian elimination, LU factorization

În Â −→

︸ ︷︷ ︸
L̂ j

︸ ︷︷ ︸
Û j

L̂ j−1 T̂−1
j T̂j Û j−1 −→ L̂ Û

L̂ = T̂−1
1 T̂−1

2 T̂−1
3 ... Û = ...T̂3T̂2T̂1Â

The process is similar to QR factorization by Householder reflections, but instead of unitary trans-
formation V̂k the lower triangular T̂j is employed here. Column by column of Â we make its content
below the main diagonal being 0. Here is an example of a pseudo-code that produces LU factorization:
for j = 1, 2, ..., n−1 do

for i = j+1, j+2, ..., n do application of T̂j

li j
..= ai j/a j j

for k = j, j+1, ..., n do row operation Âi, j:n
..= Âi, j:n− li jÂ j, j:n

aik
..= âik− li ja jk ai j becomes ai j− (li j = ai j/a j j)a j j = 0

return L̂, Â

The matrices T̂j and T̂−1
j look like (empty spaces correspond to zero matrix elements)32

T̂j =


1

1
1

−l j+1, j1
−li j 1
−lnj 1

 , T̂−1
j =


1

1
1

l j+1, j 1
li j 1
lnj 1



T̂j


·
·

a j j
a j+1, j

ai j
anj

=


1

1
1

−l j+1, j1
−li j 1
−lnj 1




·
·

a j j
a j+1, j

ai j
anj

=


·
·
a j j
−(a j+1, j/a j j)a j j +a j+1, j
−(ai j/a j j)a j j +ai j
−(anj/a j j)a j j +anj

=


·
·

a j j
0
0
0


32 The simplest case to self-check the formula for T̂−1

j is
[

1 0
l 1

][
1 0
−l 1

]
=

[
1 ·1+0 · (−l) 1 ·0+0 ·1
l ·1+1 · (−l) l ·0+1 ·1

]
=

[
1 0
0 1

]
.
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L̂ j =


1

l21 1
l j1 l j, j−1 1

l j+1,1 l j+1, j−1 1
li1 li, j−1 1
ln1 ln, j−1 1


︸ ︷︷ ︸

L̂ j−1=T̂−1
1 T̂−1

2 ...T̂−1
j−1


1

1
1

l j+1, j 1
li j 1
lnj 1


︸ ︷︷ ︸

T̂−1
j

=


1

l21 1
l j1 l j, j−1 1

l j+1,1 l j+1, j−1l j+1, j 1
li1 li, j−1 li j 1
ln1 ln, j−1 lnj 1


︸ ︷︷ ︸

L̂ j

Example 7: Consider the matrix Â and its LU factorization:33

Â =


1 0 −1 0
4 1 −5 0
3 −4 0 1
1 −2 4 1

=


1
4 1
3 1
1 1


︸ ︷︷ ︸

L̂1=T̂−1
1

Û1︷ ︸︸ ︷
1
−4 1
−3 1
−1 1


︸ ︷︷ ︸

T̂1


1 0 −1 0
4 1 −5 0
3 −4 0 1
1 −2 4 1

=

=


1
4 1
3 1
1 1




1 0 −1 0
0 1 −1 0
0 −4 3 1
0 −2 5 1

=


1
4 1
3 −4 1
1 −2 1


︸ ︷︷ ︸

L̂2=L̂1T̂−1
2

Û2︷ ︸︸ ︷
1

1
4 1
2 1


︸ ︷︷ ︸

T̂2


1 0 −1 0

1 −1 0
−4 3 1
−2 5 1

=

=


1
4 1
3 −4 1
1 −2 1




1 0 −1 0
1 −1 0
0 −1 1
0 3 1

=


1
4 1
3 −4 1
1 −2 −3 1


︸ ︷︷ ︸

L̂3=L̂2T̂−1
3

Û3︷ ︸︸ ︷
1

1
1
3 1


︸ ︷︷ ︸

T̂3


1 0 −1 0

1 −1 0
−1 1

3 1

=

=


1
4 1
3 −4 1
1 −2 −3 1




1 0 −1 0
1 −1 0
−1 1

0 4

=


1
4 1
3 −4 1
1 −2 −3 1


︸ ︷︷ ︸

L̂


1 0 −1 0

1 −1 0
−1 1

4


︸ ︷︷ ︸

Û

= L̂Û

33 The matrix Â is chosen in such a way that the matrices L̂ and Û end up being integer. Here κ(Â) ≈ 129.1, κ(L̂) ≈
414.4, and κ(Û)≈ 8.18.
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LU factorization with partial pivoting:34

Â =


1 0 −1 0
4 1 −5 0
3 −4 0 1
1 −2 4 1

=


1

1
1

1


︸ ︷︷ ︸

P̂1


4 1 −5 0
1 0 −1 0
3 −4 0 1
1 −2 4 1

=

=


1

1
1

1


︸ ︷︷ ︸

P̂1


1
1
4 1
3
4 1
1
4 1


︸ ︷︷ ︸

L̂1=T̂−1
1


4 1 −5 0
0 −1

4
1
4 0

0 −19
4

15
4 1

0 −9
4

21
4 1


︸ ︷︷ ︸

Û1

=

=


1

1
1

1


︸ ︷︷ ︸

P̂1


1
1
4 1
3
4 1
1
4 1


︸ ︷︷ ︸

L̂1=T̂−1
1


1

1
1

1




4 1 −5 0
−19

4
15
4 1

−1
4

1
4 0

−9
4

21
4 1

=

=


1

1
1

1


︸ ︷︷ ︸

P̂2


1
3
4 1
1
4 1
1
4 1




1
1
1

19 1
9

19 1


︸ ︷︷ ︸

T̂−1
2


4 1 −5 0
−19

4
15
4 1

0 1
19 −

1
19

0 66
19

10
19


︸ ︷︷ ︸

Û2

=

=


1

1
1

1




1
3
4 1
1
4

1
19 1

1
4

9
19 1


︸ ︷︷ ︸

L̂2


1

1
1

1




4 1 −5 0
−19

4
15
4 1
66
19

10
19

1
19 −

1
19

=

=


1

1
1

1


︸ ︷︷ ︸

P̂3


1
3
4 1
1
4

9
19 1

1
4

1
19 1




1
1

1
1

66 1


︸ ︷︷ ︸

T̂−1
3


4 1 −5 0
−19

4
15
4 1
66
19

10
19

0 − 2
33

=

=


1

1
1

1


︸ ︷︷ ︸

P̂


1
3
4 1
1
4

9
19 1

1
4

1
19

1
66 1


︸ ︷︷ ︸

L̂


4 1 −5 0
−19

4
15
4 1
66
19

10
19
− 2

33


︸ ︷︷ ︸

Û

34 We get κ(L̂)≈ 2.46 and κ(Û)≈ 144.8.
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LU factorization with complete pivoting:35

Â =


1 0 −1 0
4 1 −5 0
3 −4 0 1
1 −2 4 1

=


1

1
1

1


︸ ︷︷ ︸

P̂1


−5 1 4 0
−1 0 1 0

0 −4 3 1
4 −2 1 1




1
1

1
1


︸ ︷︷ ︸

Q̂1

=

=


1

1
1

1


︸ ︷︷ ︸

P̂1


1
1
5 1
0 1
−4

5 1


︸ ︷︷ ︸

L̂1=T̂−1
1


−5 1 4 0

0 −1
5

1
5 0

0 −4 3 1
0 −6

5
21
5 1


︸ ︷︷ ︸

Û1


1

1
1

1


︸ ︷︷ ︸

Q̂1

=

=


1

1
1

1


︸ ︷︷ ︸

P̂1


1
1
5 1
0 1
−4

5 1


︸ ︷︷ ︸

L̂1=T̂−1
1


1

1
1

1



−5 4 1 0

21
5 −

6
5 1

3 −4 1
1
5 −

1
5 0




1
1

1
1




1
1

1
1


︸ ︷︷ ︸

Q̂1

=

=


1

1
1

1


︸ ︷︷ ︸

P̂2


1
−4

5 1
0 1
1
5 1



−5 4 1 0

21
5 −

6
5 1

3 −4 1
1
5 −

1
5 0




1
1

1
1


︸ ︷︷ ︸

Q̂2

=

=


1

1
1

1


︸ ︷︷ ︸

P̂2


1
−4

5 1
0 5

7 1
1
5

1
21 1


︸ ︷︷ ︸

L̂2


−5 4 1 0

21
5 −6

5 1
0 −22

7
2
7

0 −1
7 −

1
21


︸ ︷︷ ︸

Û2


1

1
1

1


︸ ︷︷ ︸

Q̂2

=

=


1

1
1

1


︸ ︷︷ ︸

P̂=P̂2


1
−4

5 1
0 5

7 1
1
5

1
21

1
22 1


︸ ︷︷ ︸

L̂


−5 4 1 0

21
5 −6

5 1
−22

7
2
7

0 − 2
33


︸ ︷︷ ︸

Û


1

1
1

1


︸ ︷︷ ︸

Q̂=Q̂2

=

Problems and exercises
1. Write a program that solves the square system Âxxx = bbb by Gaussian elimination with partial

pivoting. Test it on 10× 10 Hilbert matrix Ĥi j = 1/(i+ j− 1): First compute the r.h.s. vector bbb =

Ĥ
[

1 2 3 4 5 6 7 8 9 10
]T, and then solve the system Ĥxxx = bbb.

35 We get κ(L̂)≈ 2.92 and κ(Û)≈ 121.2.
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8 Eigenvalues
Algorithm det(λÎ− Â) = 0: Calculate the characteristic polynomial of the matrix, then find its

roots. This is an unstable algorithm.
Algorithm “power iteration”: Choose arbitrarily a vector xxx0, then calculate xxxn

..= Âxxxn−1 for n = 1,
2, ... Renormalize the vector xxxn when needed. This method finds an eigenvector for the eigenvalue
with the largest absolute value.

Exapmpe 8: Consider the following matrix:

Â =


8 7 −8 −7 −1
6 7 6 −3 3
−8 −8 8 8 0
−2 −2 −2 6 2
−6 −6 −6 6 2

=


1 1 0 1 −1
0 0 1 0 1
−1 −1 0 0 0

0 1 1 1 0
0 1 0 −1 0


︸ ︷︷ ︸

V̂


16

8
4

2
1


︸ ︷︷ ︸

D̂


1 1 0 −1 0
−1 −1 −1 1 0

2 2 2 −1 1
−1 −1 −1 1 −1
−2 −1 −2 1 −1


︸ ︷︷ ︸

V̂−1

The columns of V̂ are the eigenvectors of Â: Âvvv j = 25− jvvv j, j = 1, 2, 3, 4, 5. Let us choose xxx0
..=vvv1 +

216vvv2 + 228vvv3 + 236vvv2 + 240vvv5, normalize it xxx0
..= xxx0/‖xxx0‖2, and then do power iterations xxxn = Âxxxn−1,

xxxn
..=xxxn/‖xxxn‖2 for n = 1, 2, 3, ..., 50:

1

10−4

10−8

10−12

10−16

5

The graph shows the smallest angle to one the eigenvalues vvv1, vvv2, vvv3, vvv4, vvv5. Here the vector xxx0 is
chosen in such a way, that each eigenvector is dominant at some iteration. Eventually the iterations
converge to vvv1, the eigenvector with the largest in absolute value eigenvalue.

Algorithm “inverse iteration”: Choose a number µ. Do power iteration for (Â− µÎ)−1. This
method finds an eigenvector for the eigenvalue closest to µ.

Definition 8.1: Let Â be an n× n matrix. The Rayleigh quotient of a vector xxx is the R(Â,xxx) ..=(
xxx†Âxxx

)
/(xxx†xxx). If xxx is an eigenvector of the matrix Â with eigenvalue λ, then R(Â,xxx) = λ.

Algorithm “Rayleigh quotient iteration”: Choose arbitrarily a vector xxx0, then calculate xxxn
..=
(
Â−

R(Â,xxxn−1)Î
)−1xxxn−1 for n = 1, 2, ... Renormalize the vector xxxn when needed.

Definition/Theorem 8.2: Any square n× n matrix Â has a Schur decomposition Â = Q̂T̂Q̂†,
where matrix Q̂ is unitary, while matrix T̂ is upper triangular. This is a similarity transformation, and
diagonal elements of T̂ are the eigenvalues of Â.
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Definition 8.3: A Hessenberg decomposition of a square n× n matrix Â is Â = Q̂ĤQ̂†, where
matrix Q̂ is unitary, and matrix Ĥ is such that Hi j = 0 if i > j+1. This is a similarity transformation,
and the eigenvalues of Â and of Ĥ are the same.

The Hessenberg form of a matrix Â can be ontained with Householder reflections O(n3) opera-
tions. The algorithm is simialar to QR factorization, but one leaves one more component non-zero.
This allows the zeros of the formed matrix being not destroyed by multiplying by V̂ † from the right.

Problems and exercises
1. Consider the 100× 100 matrix Â with aii = −2, and ai+1,i = ai−1,i = 1 for all i = 1,2, ...100.

The values 0 /101 of the index are identified with 100/1. The matrix is cyclic shift invariant (ai j =
ai+k, j+k), so discrete Fourier transform diagonalizes it. Consider xxx0 = eee50. (a) Do power iterations
xxxn

..= Âxxxn−1, xxxn
..=xxxn/‖xxxn‖2. Plot xxx100, xxx1000, and xxx10000. Guess the maximal in absolute value eigenvalue

λmax and the eigenvector xxxmax corresponding to it. (b) Let µ = −4.001. Plot xxx1, xxx2, xxx3, and xxx4 for
the inverse power iteration xxxn

..= (Â− µÎ)−1xxxn−1, xxxn
..= xxxn/‖xxxn‖2 (xxxn is found as the solution of the

system (Â−µÎ)xxxn = xxxn−1). (c) Do Rayleigh quotient iterations µ0 =−4.001, xxxn
..= (Â−µn−1Î)−1xxxn−1,

xxxn
..=xxxn/‖xxxn‖2, µn

..= R(Â,xxxn) = xxx†
n Âxxxn up to n = 5. Print µn and ‖xxxn±xxxn−1‖2, n = 1, 2, ..., 5.

2. Consider the matrix Â on the right. Its eigen-
values are complex. (a) Do 100 and 101 QR itera-
tions Q̂R̂ ..= Â, Â ..= R̂Q̂. Can you easily extract eigen-
values of Â, e.g., from Â1:2,1:2? (b) Do 100 shifted
QR iterations Q̂R̂ ..= Â− Î4, Â ..= R̂Q̂+ Î4. Calculate

Â =


30000 −29999 −29999 30000
30001 −30000 −30000 30001
9999 −10000 30000 −29999

10000 −10001 30001 −30000


the eigenvalues of the upper left Â1:2,1:2 and lower right Â3:4,3:4 2× 2 corners of the resulted matrix,
compare them with the eigenvalues of Â. (c) Do 100 shifted QR iterations Q̂R̂ ..= Â−µÎ4, Â ..= R̂Q̂+µÎ4
with µ = (1+ i)/2. Is Â close to being an upper triangular?

Part III

Systems of nonlinear equations
Consider you are to solve the equation f (x) = 0, where f is the continuous real function of one

real variable. This problem could be solved by simple but powerful bisection method. The idea is
the following: If you find such xleft < xright that f (xleft) and f (xright) are of different sign, then there
is such x∗, xleft < x∗ < xright, that f (x∗) = 0. Try x = (xleft + xright)/2. If f (x) = 0, then you solved
the equation. Otherwise check which f (xleft) or f (xright) is of different sign with f (x) and narrow the
interval [inside which at least one solution lies in] (xleft,xright) to either (xleft,x) or (x,xright). We can
systematically reduce, each time by factor or 2, the width of the interval containing a solution, until
the width of the interval [or uncertainty in solution] is small enough.

Here is how the solution of x = cosx equation inside the interval [0,1] is found (we define f (x) =
x− cos(x), we have f (0) =−1 < 0 and f (1) = 1− cos(1)> 0):

[...]/teaching/2019-4/math_575a/notes/Python$ cat x_eq_cos_x.py
from math import cos
xl, xr = 0., 1.
print(’{0:.8e} {1:.8e}’.format(xl, xr))
while (xr - xl > 1.e-6):
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xm = 0.5 * (xl + xr)
if (cos(xm) > xm):

print(’ {0:.15e} {1:.8e}’.format(xm, xr))
xl = xm

else:
print(’{0:.8e} {1:.15e}’.format(xl, xm))
xr = xm

[...]/teaching/2019-4/math_575a/notes/Python$ python3 x_eq_cos_x.py
0.00000000e+00 1.00000000e+00

5.000000000000000e-01 1.00000000e+00
5.00000000e-01 7.500000000000000e-01

6.250000000000000e-01 7.50000000e-01
6.875000000000000e-01 7.50000000e-01
7.187500000000000e-01 7.50000000e-01
7.343750000000000e-01 7.50000000e-01

7.34375000e-01 7.421875000000000e-01
7.382812500000000e-01 7.42187500e-01

7.38281250e-01 7.402343750000000e-01
7.38281250e-01 7.392578125000000e-01

7.387695312500000e-01 7.39257812e-01
7.390136718750000e-01 7.39257812e-01

7.39013672e-01 7.391357421875000e-01
7.390747070312500e-01 7.39135742e-01

7.39074707e-01 7.391052246093750e-01
7.39074707e-01 7.390899658203125e-01

7.390823364257812e-01 7.39089966e-01
7.39082336e-01 7.390861511230469e-01

7.390842437744141e-01 7.39086151e-01
7.39084244e-01 7.390851974487305e-01
[...]/teaching/2019-4/math_575a/notes/Python$

9 Functional iteration
Quite often a general system of non-linear equations arises (or can be rewritten) in the form

xxx = fff (xxx), where fff (·) is a n-component vector function, with an n-component vector as an argument.
A common method of solving such a system is by iterations xxx(n+1) ..= fff

(
xxx(n)
)

starting from some
initial guess xxx(0). If such iterations do converge, then they converge to a solution. Here is how the
equation x = cos(x) is solved by functional iteration, starting from initial guess x(0) = 0:

[...]/teaching/2019-4/math_575a/notes/C$ cat x_eq_cos_x.c
#include <stdio.h>
#include <math.h>
int main() { int i; double x;

for (x = 0., i = 0; i <= 34; i++, x = cos(x)) printf("%8.6f ", x);
printf("\n"); return 0; }

[...]/teaching/2019-4/math_575a/notes/C$ cc x_eq_cos_x.c -lm
[...]/teaching/2019-4/math_575a/notes/C$ ./a.out
0.000000 1.000000 0.540302 0.857553 0.654290 0.793480 0.701369 0.763960 0.722102
0.750418 0.731404 0.744237 0.735605 0.741425 0.737507 0.740147 0.738369 0.73956
7 0.738760 0.739304 0.738938 0.739184 0.739018 0.739130 0.739055 0.739106 0.7390
71 0.739094 0.739079 0.739089 0.739082 0.739087 0.739084 0.739086 0.739085
[...]/teaching/2019-4/math_575a/notes/C$
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octave:1> format long
octave:2> options = optimset(’TolX’, 1.e-13, ’TolFun’, 1.e-13);
octave:3> x = fsolve(@(x) (x - cos(x)), 0., options)
x = 7.390851332151714e-01
octave:4> y = cos(x)
y = 7.390851332151533e-01

The stability of the functional iterations at the solution xxx∗ = fff (xxx∗) could be obtained from the
linearization of fff at xxx = xxx∗.

10 Newton–Raphson method
Let us try to solve fff (xxx) = 000 system of equations. It is complicated as the vector function fff

is non-linear. Consider we have a guess for a solution, xxx0. We can approximate fff by its tangent
line approximation: fff (xxx = xxx0 +δδδ) ≈ fff (xxx0)+ (∇ fff )(xxx0) ·δδδ. The truncation of the Taylor series in δδδ

is motivated by our expectation that δδδ is small. Our system of equations becomes fff (xxx) ≈ fff (xxx0)+
(∇ fff )(xxx0) ·δδδ = 000, which is a system of linear equations for the components of vector δδδ. We have

xxx = xxx0 +δδδ≈ xxx0 +
(
solution of the (∇ fff )(xxx0) ·δδδ =− fff (xxx0) system

)
= xxx0−

(
(∇ fff )(xxx0)

)−1 fff (xxx0)

The method of solving the system of equations fff (xxx)=000 based on iterations xxxn+1 =xxxn−
(
(∇ fff )(xxxn)

)−1 fff (xxxn)
is called the Newton–Raphson method.

There is no guarantee that these iterations are going to converge, but when they do they con-
verge very fast: fff (xxxn+1) = fff

(
xxxn−

(
(∇ fff )(xxxn)

)−1 fff (xxxn)
)
= fff (xxxn)− (∇ fff )(xxxn) ·

(
(∇ fff )(xxxn)

)−1 fff (xxxn)+
1
2(∇∇ fff )(xxxn) · (

(
(∇ fff )(xxxn)

)−1 fff (xxxn))
2 ∝ ( fff (xxxn))

2. The “error” in the next step is the square of the error
in previous step.

Example 10.1: Let us compute
√

2. We may construct a function f (x) such that f (
√

2) = 0,
and then find the root by the Newton–Raphson method. Let f (x) ..= x2− 2. Then f ′(x) = 2x, and
the update rule reads as xn+1 = xn− (x2

n− 2)/2xn = xn/2+ 1/xn. If we start from x0 = 1 or x0 = 2,
we have x1 = 1/2+ 1/1 = 2/2+ 1/2 = 3/2. Then x2 = x1/2+ 1/x1 = 3/4+ 2/3 = (9+ 8)/12 =
17/12= 1.41666... (notice that 172 = 289≈ 288= 2 ·122). We have x3 = 17/24+12/17=(172+24 ·
12)/24 ·17 = 577/408 = 1.41421568... (notice that 5772 = 332929≈ 332928 = 2 ·4082). Next x4 =
665857/470832 = 1.41421356237468..., while

√
2 = 1.41421356237309... The Newton–Raphson

iterations very quickly converge to
√

2, at each iteration the number of correct significant digits is
doubled.

Example 10.2: Consider the system y = x2, xy = 1. We can write it as fff (x,y) by setting f1(x,y) =
y− x2 and f2(x,y) = xy−1. The matrix ∇ fff and the iterations look like[

∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

]
=

[
−2x 1

y x

]
[

x
y

]
7→
[

x
y

]
−
[
−2x 1

y x

]−1[ y− x2

xy−1

]
=

[
y− x2

xy−1

]
=

[
x
y

]
+

1
2x2 + y

[
x −1
−y −2x

][
y− x2

xy−1

]
=

=
1

2x2 + y

[
1+ xy+ x3

x(2+ xy)

]
=

[
1
1

]
+

α

3+4α+β+2α2

[
β+α+α2

2β−α+αβ

]
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where x = 1+α, y = 1+ β. We have x = y = 1 being a solution, with the deviation from it being
about squared in magnitude with each iteration:
octave:1> format long
octave:2> f = @(x) ([1 + x(1) * x(2) + (x(1))ˆ3, x(1) * (2 + x(1) * x(2))] / (2

* (x(1))ˆ2 + x(2)));
octave:3> x0 = [2, 0];
octave:4> [x0 ; f(x0); f(f(x0)); f(f(f(x0))); f(f(f(f(x0)))); f(f(f(f(f(x0)))))]
ans =

2.000000000000000e+00 0.000000000000000e+00
1.125000000000000e+00 5.000000000000000e-01
9.851804123711341e-01 9.510309278350515e-01
1.000325727687672e+00 1.000422180897834e+00
1.000000081169684e+00 1.000000056293719e+00
1.000000000000004e+00 1.000000000000001e+00

Problems and exercises
1. Consider the system y = x2, xy = 1 (Example 10.2). Find all of its solutions analytically. Do

several Newton-Raphson iterations starting from x0 =−1+ i, y0 = 0. Do you converge to a solution,
and if yes, to which one?

2. Consider the [transcendental] equation ex = kx. When k > e, there are two solutions, xsmall(k)<
1 and x(k)> 1. For e2≤ k≤ e10 log-log plot the solution x(k) found by (a) bisection method, (b) func-
tional iteration (you need to rewrite the equation in x = F(x) form with iterations being converging),
and (c) Newton–Raphson method.

Part IV

Numerical ODEs
Suggested reading: [AsPe98].

11 Interpolation, basic integration schemes

Consider you are to compute I =
∫ b

a dx f (x). Here we think of generic (i.e., not specified) function
f (x). We would like to 1) compute I accurately enough, and 2) spend less of an effort (which we will
measure in at how many points the function f (·) is computed).36 In a general recipe, where f (x) is
not specified, [due to linearity of integration] an algorithm of computing I

Example 11: Let us compute
∫ π/2

0 dx sin(x). We will do it in several ways:

(a) Analytical:
∫ π/2

0 dx sin(x) =−cos(x)
∣∣π/2
0 = cos(0)− cos(π/2) = 1. This is the exact answer.

(b) Taylor series:
∫

π/2

0
dx sin(x) =

∫
π/2

0
dx

∞

∑
n=0

(−1)nx2n+1

(2n+1)!
=

∞

∑
n=0

(−1)n(π/2)2n+2

(2n+2)!
. Let us calculate

this series numerically:
36 It is not necessary that the integral is estimated through values of f (·) at some points. Possible situations could be

using an analytical formula for I, or presenting f as a linear combination of functions
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[...]/teaching/2019-4/math_575a/notes/Python$ cat int_sin_b.py
from math import pi
taylor, sum, n, pi2f = 1., 0., 0, -1.
while taylor != sum:

pi2f = -pi2f * (pi / 2.)**2 / ((2. * n + 1.) * 2. * (n + 1.))
taylor, sum, n = sum, sum + pi2f, n + 1

print(’series = {0:.15e}, {1:d} terms are summed’.format(taylor, n))
[...]/teaching/2019-4/math_575a/notes/Python$ python3 int_sin_b.py
series = 9.999999999999999e-01, 11 terms are summed
[...]/teaching/2019-4/math_575a/notes/Python$

(c) Midpoint rule: for large N we have
∫

π/2

0
dx sin(x)≈ π/2

N︸︷︷︸
∆x

N−1

∑
i=0

sin
(

π(2i+1)
4N︸ ︷︷ ︸
xi

)
:

[...]/teaching/2019-4/math_575a/notes/Python$ cat int_sin_c.py
from math import pi, sin
for N in [10, 100, 1000]:

S = sum(map(sin, [(pi / 2.) * (i + 0.5) / N for i in range(0, N)]))
print(’N = {0:4d}, midpoint = {1:.15e}’.format(N, (pi / 2.) * S / N))

[...]/teaching/2019-4/math_575a/notes/Python$ python3 int_sin_c.py
N = 10, midpoint = 1.001028824142709e+00
N = 100, midpoint = 1.000010280911905e+00
N = 1000, midpoint = 1.000000102808387e+00
[...]/teaching/2019-4/math_575a/notes/Python$

(d) As in (c), but Simpson’s rule is used: here N is necessarily even, ∆x ..= (b−a)/N, x j
..= a+ j∆x (so

x0 = a and xN = b), and
∫ b

a
dx f (x)≈ ∆x

3

N/2−1

∑
j=0

(
f (x j)+4 f (x j+1)+ f (x j+2)

)
= ∆x

(
f (a)+4 f (x1)+

2 f (x2)+4 f (x3)+2 f (x4)+ ...+2 f (xN−2)+4 f (xN−1)+ f (b)
)
/3:

[...]/teaching/2019-4/math_575a/notes/Python$ cat int_sin_d.py
from math import pi, sin
for N in [10, 100, 1000]:

S, w = sin(0.) + sin(pi / 2.), 4.
for i in range(1, N):

S, w = S + w * sin((pi / 2.) * i / N), 6. - w
print(’N = {0:4d}, Simpson = {1:.15e}’.format(N, pi * S / (6. * N)))

[...]/teaching/2019-4/math_575a/notes/Python$ python3 int_sin_d.py
N = 10, Simpson = 1.000003392220900e+00
N = 100, Simpson = 1.000000000338236e+00
N = 1000, Simpson = 1.000000000000033e+00
[...]/teaching/2019-4/math_575a/notes/Python$

37

Problems and exercises
37 Chebfun — computational software using Chebyshev nodes.
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1. Consider the integral 1 =
1

e−1

1∫
0

dx exp(x). Compute it by left-, right-sum, trapezoidal, mid-

point, and Simpson’s rules. Log-log plot errors vs. ∆x, find the order of accuracy of these numerical
integration schemes.

2. (a) Compute the integral
1∫

0

dx
(
1− x2)2 using trapezoidal rule. (b) Compute the integral

1∫
0

dx
1+ x2 using Simpson’s rule. In both (a) and (b) log-log plot errors vs. ∆x, speculate about the

order of accuracy.

3. Compute
1∫

0

dx√
x+ x3

up to 10 significant digits.

12 Euler method, stability
The solution of the system of ODEs dxxx/dt = fff

(
t,xxx(t)

)
can be written as38

xxx(tend) = xxx(tstart)+

tend∫
tstart

dt fff
(
t,xxx(t)

)︸ ︷︷ ︸
dxxx/dt

We assume xxx(tstart) to be known, and our task is to find xxx(tend) or the whole trajectory xxx(t). We divide
the interval of integration [tstart, tend] into N subintervals

tstart = t0 < t1 < t2 < ... < tN−1 < tN = tend, nth step size hn = tn−1− tn

and approximate the integral of the r.h.s. fff over [tn−1, tn] using some integration scheme. We will
denote xxx(tn) as xxxn. Estimating the integral of fff over [t0, t1] would give us the difference between xxx1
and xxx0, and (as xxx0 is known) that will give us the value of xxx1.39 Next, from the esimation of the integral
of fff over [t1, t2] we will find xxx2. This way, one by one we find all the values xxxn, 1≤ n≤ N.

If we estimate the integral of fff over subinterval [tn−1, tn] using left sums rule (with just one subdi-
vision) we get the [forward] Euler method:

xxx(t +h) = xxx(t)+h fff
(
t,xxx(t)

)
From the known xxx(tstart) = xxx0 we calculate xxx1 = xxx0 + h1 fff (t0,xxx0). Note that this is a straightforward
calculation, we get xxx1 right away. Such numerical schemes for solving ODEs are called explicit.

38 Such a rewrite is not very much useful by itself, as the function xxx(t) inside the integrand fff (·, ·) is unknown.
39 Estimation of the integral may depend on the value of xxx1, then finding xxx1 is not straightforward.
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13 Runge–Kutta methods
A general Runge–Kutta method is typically defined by writing down its Butcher tableau:

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s

...
...

... . . . ...
cs as1 as2 · · · ass

b1 b2 · · · bs

kkki = h fff
(

t + cj h, xxx(t)+
s

∑
j=1

ai j kkk j

)
xxx(t +h) ..=xxx(t)+

s

∑
j=1

b jkkk j

The number s is called a number of stages. The quantity xxx(t) +∑
s
j=1 ai j kkk j could be thought as a

preliminary estimation of xxx(t +cih). The method is explicit if ai j = 0 whenever i≤ j. In this case the
preliminary data kkki, i = 1, 2, ..., s can be calculated in staightforward computation.

For a method to be at least 1st order of accuracy, we need to have b1 +b2 + ...+bs = 1.
It is physically reasonable to have ci = ∑

s
j=1 ai j, as it implies kkki = h fff

(
t +cih,xxx(t +cih)

)
+O(h3).

Then an explicit method necessarily would have c1 = 0, and kkk1 = h fff
(
t,xxx(t)

)
, i.e., the 1st stage in an

explicit Runge–Kutta method is always a forward Euler step.
A celebrated classical Runge–Kutta method of the 4th order of accuracy (RK4) is given by

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

kkk1
..= h fff

(
t, xxx(t)

)
kkk2

..= h fff
(
t + h

2 , xxx(t)+ 1
2kkk1
)

kkk3
..= h fff

(
t + h

2 , xxx(t)+ 1
2kkk2
)

kkk4
..= h fff

(
t +h, xxx(t)+kkk3

)
xxx(t +h) ..=xxx(t)+ 1

6

(
kkk1 +2kkk2 +2kkk3 +kkk4

)
It is an explicit method with 4 stages. Let us demonstrate that it is indeed of the 4th order of accuracy.
It will be convenient to use the following notation: FFF(m,n)

j1 j2... jn
..=hm+1 ∂m

∂tm
∂n

∂X j1∂X j2 ...∂X jn
fff
(
t,XXX
)∣∣

XXX=xxx(t). We

will write FFF instead of FFF(0,0) = hfff
(
t,xxx(t)

)
. For the dynamics dxxx/dt = fff

(
t,xxx(t)

)
, we would have (this
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is general, and not about RK4)

∆xxx = xxx(t +h)−xxx(t) =
(

h d
dt +

h2

2
d2

dt2 +
h3

6
d3

dt3 +
h4

24
d4

dt4

)
xxx(t)+O(h5) =FFF +

+
(

h2

2
d
dt +

h3

6
d2

dt2 +
h4

24
d3

dt3

)
fff
(
t,xxx(t)

)
+ ...=FFF + 1

2FFF(1,0)+ 1
2FFF(0,1)

j Fj +

+
(

h3

6
d
dt +

h4

24
d2

dt2

)(
∂ fff (t,XXX)

∂t + ∂ fff (t,XXX)
∂X j

f j
(
t,XXX
))∣∣∣

XXX=xxx(t)
=FFF + 1

2FFF(1,0)+ 1
2FFF(0,1)

j Fj +

+ 1
6FFF(2,0)+ 1

6FFF(1,1)
j Fj︸ ︷︷ ︸

h3
6

d
dt

∂

∂t fff (t,XXX)
∣∣

XXX=xxx(t)

+ 1
6FFF(1,1)

j Fj +
1
6FFF(0,2)

jk FjFk +
1
6FFF(0,1)

j F(1,0)
j + 1

6FFF(0,1)
j F(0,1)

j;k Fk︸ ︷︷ ︸
h3
6

d
dt f j(t,XXX) ∂

∂X j
fff (t,XXX)

∣∣
XXX=xxx(t)

+

+ h4

24
d
dt

[
∂2 fff (t,XXX)

∂t2 +2∂2 fff (t,XXX)
∂t∂X j

f j
(
t,XXX
)
+ ∂2 fff (t,XXX)

∂X j∂Xk
f j
(
t,XXX
)

fk
(
t,XXX
)
+ ∂ fff (t,XXX)

∂X j

∂ f j(t,XXX)
∂t +

+ ∂ fff (t,XXX)
∂X j

∂ f j(t,XXX)
∂Xk

fk
(
t,XXX
)]∣∣∣

XXX=xxx(t)
=FFF + 1

2FFF(1,0)+ 1
2FFF(0,1)

j Fj +
1
6FFF(2,0)+ 1

3FFF(1,1)
j Fj +

1
6FFF(0,2)

jk FjFk +

+ 1
6FFF(0,1)

j F(1,0)
j + 1

6FFF(0,1)
j F(0,1)

j;k Fk +
1

24FFF(3,0)
1 + 1

8FFF(2,1)
j Fj 12 + 1

8FFF(1,2)
jk FjFk 23 +

+ 1
24FFF(0,3)

jkl FjFkFl 3 + 1
8FFF(1,1)

j F(1,0)
j 24 + 1

8FFF(1,1)
j F(0,1)

j;k Fk 25 + 1
8FFF(0,2)

jk F(1,0)
j Fk 34 +

+ 1
8FFF(0,2)

jk F(0,1)
j;l FkFl 35 + 1

24FFF(0,1)
j F(2,0)

j 4 + 1
12FFF(0,1)

j F(1,1)
j;k Fk 45 + 1

24FFF(0,1)
j F(0,2)

j;kl FkFl 5 +

+ 1
24FFF(0,1)

j F(0,1)
j;k F(1,0)

k 5 + 1
24FFF(0,1)

j F(0,1)
j;k F(0,1)

k;l Fl 5

The digits in boxes indicate which of the 5 terms in big square brackets do contribute to the adjacent
part of the expression.
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For the classical Runge–Kutta method we have kkk1 =FFF , and

kkk2 = hfff
(
t + h

2 ,xxx(t)+
1
2FFF
)
=FFF + 1

2FFF(1,0)+ 1
2FFF(0,1)

j Fj︸ ︷︷ ︸
O(h2) terms

+ 1
8FFF(2,0)+ 1

4FFF(1,1)
j Fj +

1
8FFF(0,2)

jk FjFk︸ ︷︷ ︸
O(h3) terms

+

+ 1
48FFF(3,0)+ 1

16FFF(2,1)
j Fj +

1
16FFF(1,2)

jk FjFk +
1
48FFF(0,3)

jkl FjFkFl︸ ︷︷ ︸
O(h4) terms

+O(h5)

kkk3 = hfff
(
t + h

2 ,xxx(t)+
1
2kkk2
)
=FFF + 1

2FFF(1,0)+ 1
2FFF(0,1)

j k2 j +
1
8FFF(2,0)+ 1

4FFF(1,1)
j k2 j +

1
8FFF(0,2)

jk k2 jk2k +

+ 1
48FFF(3,0)+ 1

16FFF(2,1)
j k2 j +

1
16FFF(1,2)

jk k2 jk2k +
1

48FFF(0,3)
jkl k2 jk2kk2l +O(h5) =FFF + 1

2FFF(1,0)+

+ 1
2FFF(0,1)

j

(
Fj +

1
2F(1,0)

j + 1
2F(0,1)

j;k Fk +
1
8F(2,0)

j + 1
4F(1,1)

j;k Fk +
1
8F(0,2)

j;kl FkFl +O(h4)
)
+ 1

8FFF(2,0)+

+ 1
4FFF(1,1)

j

(
Fj +

1
2F(1,0)

j + 1
2F(0,1)

j;k Fk +O(h3)
)
+ 1

8FFF(0,2)
jk

(
FjFk +

1
2F(1,0)

j Fk +
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We have ∆xxx = xxx(t + h)− xxx(t) = (kkk1 + 2kkk2 + 2kkk3 + kkk4)/6 + O(h5), and the classical Runge–Kutta
method RK4 is indeed of the 4th order of accuracy.

Problems and exercises
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1. Consider the system of equations dx/dt = v, dv/dt = −sin(x)−0.02v. Solve the system with
the initial condition x(0)= 0, v(0)= 2.125 numerically, using forward Euler, explicit midpoint (RK2),
and classical Runge–Kutta (RK4) methods. Find out how the error in[

x(20) v(20)
]
=
[

6.8426504104428864014... 1.7912033841288853138...
]

scales with h.
2. Consider the system of equations dx/dt = p, dp/dt = x−x2.40 Solve the system with the initial

condition x(0) = 0.01, p(0) = 0.009 numerically, using forward Euler, explicit midpoint (RK2), and
classical Runge–Kutta (RK4) methods. Log-log plot the error in[

x(20) p(20)
]
=
[

0.48859294559329852479... 0.40118050259290873684...
]

vs. the step size h for all the three methods.
3. Consider the system of N ordinary differential equations (1 < n < N)

du1(t)
dt

=
−u1(t)+u2(t)

2(∆x)2 ,
dun(t)

dt
=

un−1(t)−2un(t)+un+1(t)
2(∆x)2 ,

duN(t)
dt

=
uN−1(t)−uN(t)

2(∆x)2

where ∆x = 1/N, and N = 100. (This is a discretization of ∂u/∂t = 1
2∂2u/∂x2 diffusion equation on

0 < x < 1 segment, with zero flux boundary at the walls located at x = 0 and x = 1. The quantity
un(t) could be thought as the concentration of diffusing particles inside

(
(n− 1)/N,n/N

)
interval.)

Consider the initial condition un(0) ..=CNx2
n(1− xn), where xn

..= (n− 1
2)/N and CN

..= N/∑
N
n=1 x2

n(1−
xn). Solve the system to find un(1) by (a) forward Euler using the time step τ = 1/9992; (b) forward
Euler with τ = 1/10000; (c) backward Euler, τ = 1/100. Plot un(t = 1) as a function of n.

14 Adaptive step size
To reduce computational cost / improve accuracy of computation we would like to increase / de-

crease the step size. The former reduces the number of steps, while the latter shrinks the local (and
then the global) error in each step. We would like to go with large steps through dull, uninteresting
parts of our dynamics, while it is desirable to make small steps in tricky parts of the dynamics in order
not to lose accuracy. To do so, we constantly need to be aware of whether we are satisfied with the
current, intantaneous quality of solution.

An easy way to estimate the accuracy of numerical solution is to compare it with another solution,
of comparable or even better quality. With whatever numerical scheme you are using, one possibility
is to compare xxx(t + h), obtained from xxx(t) by one full step h, with xxx(t + h) obtained from xxx(t + 1

2h),
which itself is an (h/2)-update of xxx(t). Then we compare the two versions of xxx(t + h), and if, let
us say, it is greater than some tolerance level, we do not accept such an update of xxx(t). The next
thing is to tune the size step in such a way that the predicted difference between the two versions of
xxx
(
t +new h

)
would be close to the tolerance level:

new h ..=
(

frac · tolerance level
difference of the two xxx(t +h) versions

)1/(p+1)
·h

40 This is a Hamiltonian system, with H (x, p) = 1
2 p2− 1

2 x2 + 1
3 x3.
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Here p is the order of accuracy of our scheme, and frac is the so called safety fraction.
Example 14: Consider the following system of ODEs dx/dt = p, dp/dt = −x/

√
1+ x2 with

initial condition x(0) = 10, p(0) = 0.41 We would like to construct the trajectory x(t), p(t) for 0 ≤
t ≤ tend = 20. Let us employ RK4 method and choose the step size adaptively, as described above:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define m 2
int counter; /* number of calculations of the r.h.s. f */
void RHS(double t, double *x, double *f)

{ f[0] = x[1]; f[1] = -x[0] / sqrt(1. + pow(x[0], 2.)); counter++; }

/* classical Runge--Kutta method (RK4) */
#define s 4
double X[s][m], K[s][m], a[4][4] = { { 0., 0., 0., 0.},

{1./2., 0., 0., 0.},
{ 0., 1./2., 0., 0.},
{ 0., 0., 1., 0.} },

b[s] = {1./6., 1./3., 1./3., 1./6.}, c[s] = {0., 1./2., 1./2., 1.};

void explicit_Runge_Kutta(double h, double t, double *x0, double *x1) {
int i, j, l;
for (i = 0; i < s; RHS(t + c[i] * h, X[i], K[i]), i++) for (l = 0; l < m; l++)
for (X[i][l] = x0[l], j = 0; j < i; j++) X[i][l] += h * a[i][j] * K[j][l];

for (l = 0; l < m; l++)
for (x1[l] = x0[l], i = 0; i < s; i++) x1[l] += h * b[i] * K[i][l]; }

int main(int argc, char **argv)
{
double t, dt, t_end = 20., x[m], xh[m], xhh1[m], xhh2[m];
double local_error, tolerance = 15. * atof(argv[2]), frac = atof(argv[1]);

x[0] = 10.; x[1] = 0.; t = 0.; dt = atof(argv[3]);
printf("%22.16e % 22.16e % 22.16e 0\n", t, x[0], x[1]);
for (counter = 0; t < t_end;)
{
if (t + dt > t_end) dt = t_end - t;

/* Runge--Kutta, full step */
explicit_Runge_Kutta(dt, t, x, xh);

/* Runge--Kutta, two half steps */
explicit_Runge_Kutta(0.5 * dt, t, x, xhh1);
explicit_Runge_Kutta(0.5 * dt, t, xhh1, xhh2);

/* estimating new time step from the mismatch between the two updates */
local_error = sqrt(pow(xh[0] - xhh2[0], 2.) + pow(xh[1] - xhh2[1], 2.));

/* checking whether the time step is accepted or rejected */
if (local_error < tolerance) { t += dt; x[0] = xhh2[0]; x[1] = xhh2[1];

printf("%22.16e % 22.16e % 22.16e %d\n", t, x[0], x[1], counter); }
dt = dt * pow(frac * tolerance / local_error, 0.2);

} return 0; }

41 This system is Hamiltonian, with H (x, p) = 1
2 p2 +

√
1+ x2.
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Here is the graph of p(t), the tolerance level is 10−8, the points on the graph are actual consecutive
points of the obtained numerical solution (one can see that near x = 0, where the “velocity” p(t)is the
maximal, the time step is a lot smaller):

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0  5  10  15  20

On the right is the graph that shows the dependence of the total
number of the r.h.s. fff (t,xxx) calculations to reach the final time tend =
20 as a function of frac. The curves correspond (from bottom to top)
to tolerance levels 10−4, 10−6, 10−8, 10−10, and 10−12. Whenever
frac is too small, we propagate forward with smaller steps, so we
need more steps. On the other hand, if frac is too large, we expect
rejections of the step to happen more ofter, so we’ll still need many
r.h.s. calculations.
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Problems and exercises
1. Consider the system of ODEs dx/dt = p, dp/dt =−x/

√
1+ x2 with initial condition x(0) = 10,

p(0) = 0 (Example 14). Find x(20), p(20) by Dormand–Prince method with adaptive step size. Plot
how the number of the r.h.s. evaluations changes with the tolerance level.
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15 Boundary value problems

15.1 Quasi-linearization
Discretizing the ODEs somehow, write down the BVP as a (linear or non-linear) system of equa-

tions, which then solve, e.g., by Newton–Raphson method (in this case the method is called quasi-
linearization).

15.2 Shooting method
Consider the BVP dxxx/dt = fff

(
t,xxx(t)

)
with boundary conditions ggg0

(
xxx(t0)

)
= 000 and ggg1

(
xxx(t1)

)
= 000.

Construct the system of equations for xxx(t0) being (ggg0 =000 and ggg1 =000), in which the argument of ggg1, the
vector xxx(t1) is treated as a vector function of xxx(t0) that is computed by an ODE solver. The resulting
system of equations is solved by methhods of Part III. The parts of xxx(t0) which are not immediately
determined from ggg0

(
xxx(t0)

)
= 000 are called shooting parameters.

15.3 Petviashvili factor

15.4 Galerkin method

Problems and exercises
1. Consider the BVP u′′+u2 = 0 with u(±1) = 0 boundary conditions. There are two solutions:

u(x) ≡ 0 and a “non-trivial” one. Find the latter solution by (a) quasi-linearization method uuun+1
..=

uuun−
(
(∇ fff )(uuun)

)−1 fff (uuun):

uuu =



u(−1)
u(−1+h)

u(−1+2h)
...

u(x)
...

u(1−h)
u(1)


, fff (uuu) =



u(−1)
u(−1)−2u(−1+h)+u(−1+2h)+h2u2(−1+h)

u(−1+h)−2u(−1+2h)+u(−1+3h)+h2u2(−1+2h)
...

u(x−h)−2u(x)+u(x+h)+h2u2(x)
...

u(1−2h)−2u(1−h)+u(1)+h2u2(1−h)
u(1)


(b) simple shooting method (there is only one shooting parameter here, e.g., u′(−1)); and (c) func-
tional iteration with Petviashvili factor:

vn(x) ..= An · (x+1)−
x∫
−1

dξ1

ξ1∫
−1

dξ2 u2
n(ξ2), by construction v′′n =−u2

n and vn(−1) = 0

An is chosen to enforce vn(1) = 0

un+1(x) ..= vn(x) ·


1∫
−1

dξ
(
−v′′n(ξ)

)
1∫
−1

dξ v2
n(ξ)


α

, α ..= 1 for faster convergence
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