Situation

\[X = V(I) \subseteq \mathbb{P}^n \]
\[I \subseteq S = k[x_0, \ldots, x_n], \quad R = S/I \]

\(M \) graded \(R \)-module

(finitely generated)

\(\mathfrak{I} = \widetilde{M} \) coherent sheaf on \(X \)

want to find:

- \(h^i(\mathfrak{I}) := \dim_k H^i(X, \mathfrak{I}) \)
- \(H^i(X, \mathfrak{I}) \)
- \(H^i_+(\mathfrak{I}) \)

module structure:

\[H^i_+(\mathfrak{I}) := \bigoplus_{d \in \mathbb{Z}} H^i(X, \mathfrak{I}(d)) \]

this is an \(R \)-module

- \(H^i_+(\mathfrak{I})(d) \)
Čech complex + Čech cohomology

\[\mathcal{U} = \{ U_0, \ldots, U_m \} \]

open affine cover of \(X \)

\[U_\lambda \coloneqq \bigcap_{i \in \lambda} U_i \quad \lambda = \{ 0, \ldots, m \} \]

Define

\[C^p(\mathcal{F}) := \bigoplus_{\lambda \subseteq \{ 0, 1, \ldots, p \}} \mathcal{F}(U_\lambda) \]

\[\sigma_p : C^p(\mathcal{F}) \to C^{p+1}(\mathcal{F}) \]

\[(f_0 \ldots f_p) \mapsto (g_{i_0} \ldots g_{i_{p+1}}) \]

\[g_{i_0} \ldots g_{i_{p+1}} = \sum_{i=0}^{p+1} (-1)^i f_{i_0} \ldots \hat{f}_i \ldots f_{i_{p+1}} \]
$\mathcal{C}(\mathcal{F})$ is the complex

$$0 \rightarrow \mathcal{C}^0(\mathcal{F}) \xrightarrow{\delta_0} \mathcal{C}^1(\mathcal{F}) \xrightarrow{\delta_1} \cdots \xrightarrow{\delta_{n-1}} \mathcal{C}^n(\mathcal{F})$$

Def \quad H^i(\mathcal{F}) = H^i(X, \mathcal{F})

$$:= H^i(\mathcal{C}(\mathcal{F}))$$

Theorem \quad This is independent of the open cover (as long as it is affine)
$H^i(\overline{M})$:

Let M be a f.g. graded S-module \overline{M} coherent sheaf on \mathbb{P}^n

Def Let $L^p(M) := \bigoplus_{1 = p+1} M \otimes_S S[x_{x^\lambda}]$

where $\lambda = \{x_0, ..., x_p\} \subseteq \{0, ..., n\}$

and $x_{x^\lambda} = x_{x_0} x_{x_1} ... x_{x_p} \in S$

Define $\sigma_p : L^p(M) \to L^{p+1}(M)$

as above

$L^p(M) : 0 \to L^p(M) \to ... \to L^n(M)$
Proposition

\[H^i_*(\tilde{M}) = H^i_*(C(M)) \]
\[H^i_*(\tilde{M}) = H^i_*(C(M)_{deg=0}) \]

"proof"

Let \(U_i = \mathbb{P}^n \setminus V(x_i) \quad i = 0, \ldots, n \)

then \(C(M)_d = C(\tilde{M}(d)) \)

Note: this complex + cohomology can be used to define the module structure on \(H^i_*(\tilde{M}) \)
cohomology of \(\Omega_{\mathbb{P}^n} \Rightarrow \mathbb{S} \) (Serre)

\[
H^i(\Omega_{\mathbb{P}^n}) = \begin{cases}
\mathbb{S} & i = 0 \\
0 & 1 \leq i \leq n \\
\frac{1}{x_0 \cdots x_n} k[x_0^{-1}, \ldots, x_n^{-1}] & i = n
\end{cases}
\]

proof idea: good exercise!

\(C(S) \) is \(\mathbb{Z}^{n+1} \)-graded

\(C(S)_m \) is recognizable \((m \in \mathbb{Z}^{n+1})\)
Def if \(M = \bigoplus_{d \in \mathbb{Z}} M_d \)

is a graded \(S \)-module

the graded \(k \)-dual \(M^\vee \) is

\[
M^\vee = \bigoplus_{d \in \mathbb{Z}} M_{-d}
\]

\(k \)-vector space dual

So:

\[
H^*_S(S) \cong \left[S(-n-1) \right]^\vee
\]

\(\omega_{pr} \)

dualizing sheaf
Local duality (Serre) \(S = k[x_0, \ldots, x_n] \)

(a) for \(i \geq 1 \)

\[
H^i_*(\widetilde{M}) = \text{Ext}^{n-i}_S(M, S(-n-1))
\]

and so

\[
H^i_*(\widetilde{M}) = \text{Ext}^{n-i}_S(M, S)_{-n-1}
\]

(b)

\[
0 \rightarrow \text{Ext}^{n+1}_S(M, S(-n-1)) \rightarrow M \rightarrow H^0_*(\widetilde{M}) \rightarrow \text{Ext}^n_S(M, S(-n-1)) \rightarrow
\]

is exact.
simple, yet useful

corollary of local duality:

Let M be a f.g. graded S-module.

Then

$$\text{pdim}_S(M) \leq n-1$$

$$\iff M = H^0(\tilde{M})$$

[in particular, in this case

$$M_0 = H^0(\tilde{M})$$]
Corollary of local duality

\[H^0_\mathfrak{m}(M) \text{ is f.g.} \]

\[\iff \text{every associated component of } M \]

\[\text{has dimension } \geq 1 \text{ in } \mathbb{P}^n \]

Proof

\[H^0_\mathfrak{m}(M) \text{ f.g.} \]

\[\iff \text{Ext}^n_\mathfrak{m}(M, S) \text{ has finite dim over } k \]

\[\iff \text{codim Ext}^n_\mathfrak{m}(M, S) = n+1 \]

But (Eisenbud-Huneke-Vasconcelos)

\[\text{codim Ext}^i_\mathfrak{m}(M, S) \geq i \]

and equality holds iff \(M \) has an associated prime of codim \(i \)
Important example:

Sheaf \(\Omega'_x \) of differential forms on \(X \in \mathbb{P}^n \).

Two useful exact sequences:

\[
0 \to \Omega'_{P^n} \to \Theta_{P^n}(-1) \to \Theta_{P^n}^{n+1}(x_0, \ldots, x_n) \to 0
\]

[think: \(dx_0, \ldots, dx_n \) on \(U_i \):

generated by \(dx_0, \ldots, dx_1, \ldots, dx_n \)]

\[
\tilde{I}_x \to \Omega'_{P^n} \oplus \Theta_x \to \Omega'_x \to 0
\]

\(g \mapsto dg \)
unwind these:

proposition Let \(X = V(I) \subset \mathbb{P}^n \)

\[R = S/I \]. The cotangent sheaf \(\Omega^1_X \) is the sheaf associated to the homology module of

\[F \otimes_R \overset{dj}{\rightarrow} R(-1)^{\text{dim} I} \overset{1 \otimes \text{generator matrix of } I}{\rightarrow} R \]

where if \(j: F \rightarrow \mathbb{R}S \) is the generator matrix of \(I \)

then \(dj \) is the Jacobian of \(j \).
Example Fermat quartic

\[X = V(a^4 + b^4 + c^4 + d^4) \subseteq \mathbb{P}^3 \]

K3 surface

Let's find \(\Omega_x^1 = \mathcal{M}, \quad h^1(\Omega_x^1) \)

(1)

\[R(-4) \xrightarrow{\partial} R(-1)^4 \xrightarrow{\partial} R \]

\[\begin{pmatrix}
 a^3 \\
 b^3 \\
 c^3 \\
 d^3
\end{pmatrix} \]

(2) gives \(\mathcal{M} \).

\[0 \rightarrow \mathcal{O}(-4) \rightarrow \mathcal{O}(-3)^4 \rightarrow \mathcal{O}(-2)^6 \rightarrow \mathcal{O} \rightarrow 0 \]

\[\begin{pmatrix}
 \mathcal{O}(-8) \\
 \mathcal{O}(-5)^4
\end{pmatrix} \]

So \(h^0(\Omega_x^1) = \mathcal{M} \)

\(h^0(\Omega_x^1) = 0 \)
\[h'(\Omega'_x) = 20 \]
\[h^2(\Omega'_x) = 0 \]

Question

\[X = V(I) \subset \mathbb{P}^n \] smooth, say

From above, get \(M \)

\[\tilde{M} = \Omega'_x \]

when is \(\text{pdim}_s(M) \leq n-1 \)

ie:

\[H^0(\Omega'_x) = M \]?
Given \(G \xrightarrow{\varphi} F \xrightarrow{\epsilon} M \xrightarrow{\partial} 0 \)

then \(G \Theta \Lambda \Phi' F \xrightarrow{\partial} \Lambda F \xrightarrow{\epsilon} \Lambda P M \xrightarrow{\partial} 0 \)

is a presentation of \(\Lambda P M \)

and: \(\Omega^p_x = \Lambda P M \)

if \(\Omega'_x = \sim M \)
Example: Hodge diamond

$X \subseteq \mathbb{P}^n$ smooth

dimension d (say $= 3$)

$h^{p-q} := \dim \mathbb{H}^q(\Omega^p_X)$

have:

$$h^{p-q} = h^{d-p, d-q}$$

$$h^{p-q} = h^{q, p}$$

$$H^i(X; \mathbb{C}) = \bigoplus_{p+q = i} H^q(\Omega^p_X)$$

$h^0(\Omega^p_X)$
$h^1(\Omega^p_X)$
$h^2(\Omega^p_X)$
$h^3(\Omega^p_X)$
Want: to compute as few of these as possible.

\[\chi(\tilde{M}) := \sum_{i=0}^{\eta} (-1)^i h^i(\tilde{M}) \]

is \(P_m(0) \), where \(P_m(d) := \) Hilbert poly of \(M \)

first row: easiest

second row: \(\tilde{M} = \Omega'_{x} \)

need only: \(\chi(\Omega'_{x}) \)

\(h^i(\Omega'_{x}) \)

(for \(\text{dim } X = 2 \) or \(3 \))
Hodge diamond

$X \in \mathbb{P}^4$ quintic 3-fold

$$
\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1
\end{bmatrix}
$$

Note:

$h'(\tilde{\mathcal{M}}) = \dim \text{Ext}^{n-1}_S(M,S)_{n-1}

= \dim \text{Ext}^3_S(M,S)_{-5}$
Def \(X \subseteq \mathbb{P}^n \), smooth, is called rationally connected if \(\forall \, \, p \neq q \in X \), there is a rational curve on \(X \) containing \(p, q \).

Conjecture \(X \) is RC

\[\Rightarrow \, H^0((\Omega^1_X)^\otimes m) = 0 \]

for all \(m \geq 1 \)

[Mumford, Mori?]