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0 Functions on curves
e The function Q(t)
e The ABP-criterion

@ Difference equations
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Functions on curves

@ Rational functions

@ Analytic and entire functions

@ Frobenius twisting
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Scalar quantities

Let p be a fixed prime; q a fixed power of p.

A= Fq[f] .
k := Fq(0) .
k —
ko :=Fq((1/0))
Coo = ko —
[ -
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Rational functions

@ We select a variable t that is independent from 6. The rational
function field F4(t) is taken to be the function field of P! /Fg:

Fg(t) «— P'/Fyq.
@ Moreover, for any field K O g,

K(t) — P'/K.
@ We will often take K = k or K = C.
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Anayltic functions
The Tate algebra

@ The Tate algebra is defined to be the ring of functions in C..[[t]]
that are analytic on the closed unit disk:

T := {Z ait' e Coo[[t]]

i>0

|a,-|oo — 0}.

@ T is a p.i.d. with maximal ideals generated by t — a for |a|., < 1.

@ Useful fact:
T 1 Fg[f]] = F[t]

@ We will take L C C((t)) to be the fraction field of T.
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Entire functions

@ The ring E of entire functions is defined to be

._ 4 \/i ‘ai’OO_>07
E .= {; ait’ € Coo[[1]] ‘ ko

ap, ay, a,...): ko] < oo}'
@ The first condition implies that a given f € E converges on all of
Cso- Itis equivalent to having
,ILTO 7 ord(a;) = o
@ The second condition implies that f(ks) C Keo.
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Frobenius twisting

@ Let f =Y ait’ € Co((t)). For any n € Z, we set

M =3 al't € Cool((1))-

to the q"-th power.

Thus f — (" has the effect of simply raising the coefficients of f
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Frobenius twisting

@ Letf =Y ait' € C((t)). Forany n e Z, we set
M =3 a7t e Cool((1))-

Thus f — (" has the effect of simply raising the coefficients of f
to the g"-th power.

@ These maps are automorphism
f = £ Coo((8) = Cao((8)),

which induce automorphisms of each of the following rings and
fields: _ B
k[t], T, k(t), L, E.
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The automorphism o
o fi f1

@ When n = —1, we call this automorphism o: for f = °; at/,

o(f) =D =3"allt.

i
@ Moreover, o has the following fixed rings and fields:
Coo((1))7 =Fq((1)),  Kk(t)7 = Fq(1),

T = TFqlt],

g __
L7 = Fy(1).
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The function (1)

@ Fix (y:= °

0 = expc(mq/0)
@ We define an infinite product

—CeqH(
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The function (1)

@ Fix (y:= °

0 = expc(mq/0)
@ We define an infinite product

=¢ 7 H(
@ Functional equation

)eEmk(@mm
QD) = (t - 0)Q(t)
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The function (1)

@ Fix (y:= °

0 = expc(mq/0)
@ We define an infinite product

=¢ 7 H(
@ Functional equation

)eEmk(@mm

QD) = (t - 0)Q(t)

o t
| | 1 - —
0) , ( 0
i=1
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The function 1/Q(t)

e Recall Q(t) = ¢, 711, (1 — t/69)

@ The zeros of Q(t) in C. are precisely t = 69, t = 69°, ..., each of
which has absolute value > 1. Therefore,
1

—— €T
am "~
and in fact 1/Q(t) converges on || < [09]oc.
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The function 1/Q(t)
e Recall Q(t) = ¢, 711, (1 — t/69)

@ The zeros of Q(t) in C. are precisely t = 69, t = 69°, ..., each of
which has absolute value > 1. Therefore,

1

—— €T
"~
and in fact 1/Q(t) converges on || < [09]oc.

@ If we compare with the Carlitz period,

g = 0¢ T(1-6-7) ",
o=t I (1-07)
then we see

1

= —Tgq-
(9) I
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Summary of Q(1)

i=1

Q(t) = g(;qﬁm —t/69) € E
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Summary of Q(1)

i=1

Qt)=¢ TJ(1 - t/¢7) e E
@ Functional equation:

QD) = (t— 0)Q(1).
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Summary of Q(1)

Qt)=¢ TJ(1 - t/¢7) e E
@ Functional equation:

i=1

QD) = (t— 0)Q(1).
@ Specialization:

Tq
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The “ABP-criterion”

@ Theorem of Anderson, Brownawell, P.

@ Proof of Wade’s theorem
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Theorem (Anderson, Brownawell, P. 2004)

Letr > 1. Fix a matrix & = &(t) € Mat,(k[t]), such that
det(®) = c(t — 0)° for somec € k* and's > 0.
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Theorem (Anderson, Brownawell, P. 2004)

Letr > 1. Fix a matrix & = &(t) € Mat,(k[t]), such that

det(®) = c(t — 0)® forsome c € k* and s > 0. Suppose we have also
a column vector of entire functions, ¢» = ¢ (t) € Mat,1(E), satisfying
the functional equations

Y = oy,

AWS 2008 (Lecture 2) Difference Equations and Independence March 16, 2008 14 /30



Theorem (Anderson, Brownawell, P. 2004)

Letr > 1. Fix a matrix & = &(t) € Mat,(k[t]), such that

det(®) = c(t — 0)® forsome c € k* and s > 0. Suppose we have also
a column vector of entire functions, ¢» = ¢ (t) € Mat,1(E), satisfying
the functional equations

1/,(—1) = ).
Now suppose that there is a k-linear relation among the entries of
¥(0); that is, there is a row vector £ € Maty (k) so that

£ (0) = 0.

AWS 2008 (Lecture 2) Difference Equations and Independence March 16, 2008 14 /30



Theorem (Anderson, Brownawell, P. 2004)

Letr > 1. Fix a matrix ® = ®(t) € Mat,.(k|[t]), such that

det(®) = c(t — 0)® forsome c € k* and s > 0. Suppose we have also
a column vector of entire functions, ¢» = ¢ (t) € Mat,1(E), satisfying
the functional equations

P = oy,

Now suppose that there is a k-linear relation among the entries of
¥(0); that is, there is a row vector £ € Maty (k) so that

§4(0) = 0.
Then there is a row vector of polynomials P(t) € Maty.(k[t]) so that

P(t)y(t) =0, P(0) =¢.
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Wade’s theorem revisited
Theorem (Wade 1941)

The Carlitz period 7 is transcendental over k.
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Wade’s theorem revisited

Theorem (Wade 1941)
The Carlitz period 7 is transcendental over k.

@ Consider
1 0 0 1
0 t—90 0 Q(t)
d = . 5 ¢ = .
o o0 .- (t—-6m Q(H)ym

@ The functional equation Q(-1) = (¢ — 6)Q implies

D = oy,

@ Use ABP-criterion with ®, ¢ to show 74 cannot satisfy an
algebraic relation over k.
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@ Suppose

€0 — &1

S (_qymém _
q * )T('m 0,

q

& €k, Eobm # 0
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@ Suppose

50—5—1—

q

@ Ifwelet ¢ := [,

...+(—1)m£—',',7,,—0, & €k, &o&m #0
Tq
., &m), then

£(0) = 0.
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@ Suppose

50—5—1—

q

@ Ifwelet ¢ := [,

...+(—1)m§—',7,7,,—0, & €k, &o&m #0
Tq
., &m), then

&p(9) = 0.
@ The ABP-criterion i_mplies there exist polynomials
Po(1),..., Pm(t) € k[t] so that

Po(t) + P1(D)Q(t) + - - + Pm(D)Q()™

=0, Pi(0)=¢
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@ Suppose

50—5—1—---+(—1)m%:0, & € K, &om # 0.
q

Tq
o Ifwelet ¢ = [&,...,&m], then
§Y(0) = 0.

@ The ABP-criterion implies there exist polynomials
Py(t), ..., Pm(t) € K[t] so that

Po(t) + P1(1)Q(t) + - - - + Pm()Q()" =0,  Pi(0) = &

@ Since Py(t) # 0 and Pp(t) # 0, it follows that Py(t) must vanish at
the infinitely many zeros of Q(t). Contradiction.

AWS 2008 (Lecture 2) Difference Equations and Independence March 16, 2008 16/30



Difference equations

@ Definitions of difference equations and their solution spaces

@ Example for Carlitz logarithms

@ Other examples in brief

» Carlitz zeta values

» Periods and quasi-periods of Drinfeld modules
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Difference equations

@ Fix a matrix ¢ € GL,(k(t)). We consider the system of equations

P =0y, (o(y) = dy),

for ) € Mat,.1(L). (Recall L = fraction field of the Tate algebra T.)
@ Define the space

Sol(®) = {4y € Mat,1(L) | ") = oy}

It is an F4(t)-vector space.

@ The entries of Sol(®) are then candidates for the application of the
ABP-criterion.
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Lemma

The space Sol(®) = {1 € Mat, (L) | v(-1) = &y} satisfies

dim]Fq(t) SO|(¢) <r.
@ We will show that if ¢4,

,¥m € Sol(®) are linearly independent
over [Fq(t), then they are linearly independent over L.
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Lemma
The space Sol(®) = {1 € Mat,,1(L) | (-1 = dq} satisfies

dimg, ) Sol(®) < r.

@ We will show that if ¢4, ...,v¥m € Sol(®) are linearly independent
over [Fq(t), then they are linearly independent over L.
@ Suppose m > 2 is minimal so that we have 1, ... ¥y € Sol(P)

linearly independent over [Fq(t) but

m
0=> fh, fielfi=1.

i=1
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Lemma
The space Sol(®) = {1 € Mat,,1(L) | (-1 = dq} satisfies

dimg, ) Sol(®) < r.

@ We will show that if ¢4, ...,v¥m € Sol(®) are linearly independent
over [Fq(t), then they are linearly independent over L.
@ Suppose m > 2 is minimal so that we have 1, ... ¥y € Sol(P)

linearly independent over [Fq(t) but

m
0=> fh, fielfi=1.

i=1

@ Multiply both sides by ¢:

m m
0=>"fiovi=> fui .
i=1 i=1
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Lemma
The space Sol(®) = {1 € Mat,,1(L) | (-1 = dq} satisfies

dimg, ) Sol(®) < r.

@ We will show that if ¢4, ...,v¥m € Sol(®) are linearly independent
over [Fq(t), then they are linearly independent over L.
@ Suppose m > 2 is minimal so that we have 1, ... ¥y € Sol(P)

linearly independent over [Fq(t) but

m
0=> fh, fielfi=1.

i=1

@ Multiply both sides by ¢:
m m ]
0=>"fiovi=> fui .
i=1 i=1

@ Twist and subtract the two equations.
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@ We obtain

0=~ 1"y = 26— 1y
i=1 =2

@ By minimality of m, we have f; = f,.(_”. Thus each

fi e L7 = Fq(t).
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Fundamental matrix for ¢

Definition

o if

@ In this case,

Given ¢ € GL,(k(t)), a matrix W € GL,(L) is a fundamental matrix for
v — v,

dimg, ;) Sol(®) = r.
@ The columns of W form a basis for Sol(®).
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Q(t) yet again

@ Here r = 1. We take

@ Difference equation:

d=t—0, Q)= gqﬁo —t/6%)

i=1
@ Specialization:

QD) = (t— 0)Q(t).
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Carlitz logarithms

@ Recall the Carlitz exponential

expo(z) = 2+ Z

(09 —

z9
0)(69 — 69)

. (eq! _ 9qi—1)'
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Carlitz logarithms

@ Recall the Carlitz exponential

zd
expo(z) = z + Z e

(eql _ eq) . (eq/ _ 0qi—1)'
@ lts formal inverse is the Carlitz logarithm

loge(z) =z + i

z9

0 —09)(0 —0F)--- (0 —09)
logo(2) converges for | 2|, < |0]9/(91) and satisfies
0log¢(z) = logc(02) + loge(z9)
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The function L,(t)
@ For a € k, |a|s < 019/(9=1), we define

—a—l-z(t_eq)

which converges up to 09|

qi

— 9F) -
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The function L,(t)
@ For a € k, |a|s < 019/(9=1), we define

—a—l-z(t_eq)

which converges up to 09|

qi

— 09
@ Connection with Carlitz logarithms

La(6) = logg(a).

AWS 2008 (Lecture 2)

Difference Equations and Independence

(-

~eT
69")

Y



The function L,(t)
@ Fora €k, |a|s < |0)19(3-1), we define

_O‘+Z(t—eq

which converges up to 09|

qi

— 09
@ Connection with Carlitz logarithms

La(0) =

logc(a).
@ Functional equation
TR NG B
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Difference equations for L,(t)

o If we set

¢:[ t—140 0

aVa(t—6) A
then

Q
QL,

] € Maty(K[t]), V= [

ﬂ € Maty(E),

v — ow
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Difference equations for L,(t)

o If we set

d):[ t—140 0

aVa(t—6) A
then

Q
QL,

] € Maty(K[t]), V= [

@ Specialization at t = 0:

ﬂ € Maty(E),

v — ow

vy = [— 00e(a) ﬂ :
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Carlitz zeta values
@ For a positive integer n,

Ce(n)

1
> ke
an
ackq[0]
a monic
@ Euler-Carlitz relations: If (g — 1) | n, then

Co(n) = ramg, I € Fg(6).
For example,

Celg—1)=

q—1

Tq
0 — 09
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Anderson, Thakur, and (¢(n)

Theorem (Anderson-Thakur 1990)
There exist (explicit) hg,

he € Fg[0] so that

Z hilog! (¢'
Carlitz polylogarithm

z9

log?(z) = z +
; 6 — 69)(6

—09)---
Carlitz factorial: ', € Fy[0]
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Difference equations for (¢(n)
If we let

and take

ad

La,n(t) =o+ Iz_; [([’ _ 0‘7)([‘

—9q2)~--(t—9qi):|n7

(t—6)" 0 - 0 Q0 .-
oo [0 T o) e,

@) D(t-0) 0 o
then

v = o,

Furthermore, (¢(n) is essentially an F4(6)-linear combination of the
first column of W(6).
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Periods and quasi-periods of rank 2 Drinfeld modules

Let p : Fq[t] — K[F] be a rank 2 Drinfeld module such that
p(t) = 0+ kF + F2.

Suppose

Fori=1, 2, set

ker(exp,(2)) = Fg[flw1 + Fg[flwz € Coc.

oo i )
si(t) = —Zexpp(@ﬁ)t’ eT.
i=0

AWS 2008 (Lecture 2)

Difference Equations and Independence



Difference equations for rank 2 Drinfeld modules
@ We let

0 1 0
¢:[t—0 —/§1/Q:|’ w:[
@ Then

—1
1] 351) ng)
1 —« 3;1) séz) ’
and

v = ow

w(g)" = [w1

M ]
wo M
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