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φ(z) = z2 + az ∈ CK [z ].

◮ If |a| ≤ 1, then φ(ζ(0, 1)) = ζ(0, 1), with φ = z2 + az , and
hence with degζ(0,1) φ = 2.

Then φ has good reduction, because deg φ = deg φ.

Each residue class x is mapped to the residue class φ(x).

So Fφ,Ber = P1
Ber r {ζ(0, 1)}, and Jφ,Ber = {ζ(0, 1)}.

◮ If |a| > 1, then Jφ,Ber = Jφ ⊆ P1(CK ) is the same Cantor set
as before.

Then Fφ,Ber = P1
Ber r Jφ, all points of which are attracted to

∞ under iteration.
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φ(z) = az3 + z2 + bz + c , where 0 < |a| < 1, and |b|, |c | ≤ 1.

Then φ(z) = z2 + bz + c , so that φ maps ζ(0, 1) to itself with
multiplicity 2.

So ζ(0, 1) ∈ Jφ,Ber is a (Type II) repelling fixed point.

φ maps each residue class x other than ∞ to its image under φ.

Since none of them ever hits ∞, they are all contained in FBer.

However, φ maps the residue class ∞ onto all of P1
Ber. The Julia

set Jφ,Ber is scattered through this residue class.

Recall that the classical Julia set Jφ was not compact; but of
course the Berkovich Julia set Jφ,Ber must be compact.

In particular, that sequence β1, β2, . . . (of preimages of the
repelling fixed point α) accumulates at ζ(0, 1) ∈ Jφ,Ber.
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Theorem
Let φ(z) ∈ CK (z) be a rational function of degree d ≥ 2,
with (Berkovich) Fatou set Fφ,Ber and Julia set Jφ,Ber.

Let U ⊆ Fφ,Ber be a connected component of Fφ,Ber, and let
x ∈ U. Then

◮ U is the union of all connected Berkovich affinoids containing
x and contained in Fφ,Ber.

◮ φ(U) is a connected component of Fφ,Ber.

◮ φ−1(U) is a disjoint union of at most d connected
components V1, . . . ,Vℓ of Fφ,Ber.

Each Vi maps di -to-1 onto U, for some di ≥ 1,
and d1 + · · · + dℓ = d.
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Periodic Fatou Components

Definition
Let φ ∈ CK (z) be a rational function of degree d ≥ 2 with Fatou
set Fφ,Ber.
Let U ⊆ Fφ,Ber be a connected component of the Fatou set, and
suppose that φm(U) = U for some (minimal) integer m ≥ 1.

◮ We say U is an indifferent component if the mapping
φm : U ։ U is one-to-one.

◮ We say U is an attracting component if there is an attracting
periodic point x ∈ U of period m, and if lim

n→∞
φmn(ζ) = x for

all ζ ∈ U.

A connected component of Fφ,Ber that is not preperiodic is called
a wandering domain.
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Let φ ∈ CK (z) be a rational function of degree d ≥ 2 with Fatou
set Fφ,Ber.

Let U ⊆ Fφ,Ber be a connected component of the Fatou set.

Then exactly one of the following three possibilities occurs.

1. Some iterate φn(U) is an indifferent periodic component.

2. Some iterate φn(U) is an attracting periodic component.

3. U is a wandering domain.
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Recall that φ has good reduction if when we write φ(z) =
f (z)

g(z)
where f , g ∈ O[z ] satisfy

◮ (f , g) = 1,

◮ at least one coefficient of f and/or g is a unit (i.e., |a| = 1),

then deg(f /g) = deg φ.

In that case, Jφ,Ber = {ζ(0, 1)}, and each residue class is a Fatou
component.

The components map to each other as dictated by φ := f /g acting
on P1(k).

An n-periodic residue class DBer(a, 1) is attracting if and only if

φ has a critical point among
{

a, φ(a), . . . , φ
n−1

(a)
}

.
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If φ(z) ∈ Cv [z ] with deg φ ≥ 2 is a polynomial, then the Fatou
component W containing ∞ is fixed and attracting.

If φ is not of potentially good reduction, thenW is not a disk.
Instead, it is of Cantor type.

That is, let V0 = P1(CK ) r DBer(a, r) ⊆ Fφ be the largest open
P1

Ber-disk containing ∞.

V1 := φ−1(V0) ) V0 is a non-disk open affinoid, with at least two
ends outside (the unique) end of V0.

V2 := φ−1(V1) ) V1 is a non-disk open affinoid; with at least two
ends outside each end of V1.

etc. In the end, W =
⋃

n≥0

Vn.
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Theorem (Rivera-Letelier, 2000)

Let φ ∈ CK (z) be a rational function of degree d ≥ 2 with Fatou
set Fφ,Ber, and let U ⊆ Fφ,Ber be a periodic connected component
of the Fatou set.

1. If U is indifferent, then U is a rational open connected
affinoid, and φ permutes the (finitely many) boundary points
of U. The boundary points are all type II periodic Julia points.

2. If U is attracting, then U is either a rational open disk or a
domain of Cantor type.
For an open disk, the unique boundary point is a type II
repelling periodic (Julia) point.
For Cantor type, the boundary is uncountable and contained
in the Julia set. The boundary can include points of type I,
type II, or type IV.
(Maybe also type III? Requires a wandering domain with
certain properties.)
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.

Note that φ
3
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It is not hard to check that

φ maps











ζ(0, |π|−1) 7→ ζ(0, |π|) with multiplicity 2,

ζ(0, |π|) 7→ ζ(1, |π|) with multiplicity 1,

ζ(1, |π|) 7→ ζ(0, |π|−1) with multiplicity 1,

so these three type II points form a repelling cycle of period 3.

It’s also easy to check that φ maps the open connected affinoid

U := DBer(0, |π|−1) r
(

DBer(0, |π|) ∪ DBer(1, |π|)
)

bijectively onto itself.
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Theorem (RB, 1998)

Let K be a locally compact non-archimedean field, with CK the
completion of an algebraic closure of K. (Note: char k = p > 0.)

Let φ ∈ K (z) be a rational function of degree d ≥ 2 with classical
Julia set Jφ,I and Berkovich Fatou set Fφ,Ber.

Suppose that either

◮ char K = p and Jφ,I contains no wild critical points, or

◮ char K = 0 and Jφ,I contains no wild recurrent critical points.

Then Fφ,Ber has no wandering domains.
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Change coordinates so that Jφ ⊆ D(0, 1).
Extend K to include all critical points of φ and some point of a
supposed wandering domain U.

Note that φn(U) is a disk, and does not contain any critical points,
for all n big enough.

For any n ≥ 0, let Vn ) φn(U) be a slightly larger disk.

Then Vn intersects Jφ,Ber, so the forward iterates of Vn get big.

By the no wild (recurrent) Julia critical hypothesis, there is a
radius R > 0 so that φm(Vn) has to get up to radius at least R
before it can contain any (or more than M) wild critical points.

By the power series lemma, φm+n(U) has to have radius at least
about R (or |p|M

′

R).

So U has infinitely many non-overlapping iterates of radius
bounded below and intersecting the compact set OK , a
contradiction. QED
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There Can be Wandering Domains

One of the hypotheses of the No Wandering Domains result is that
φ is defined over a locally compact subfield of CK .

But if we relax that condition, we can find wandering domains.

Theorem
Let CK have residue field k that is not algebraic over a finite field.

Then any φ(z) ∈ CK (z) with a type II Julia periodic point ζ has
wandering domains “in the basin of attraction” of ζ.

The wandering domains in question are just wandering residue
classes of ζ whose iterates avoid “bad”residue classes.
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Subtler Wandering Domains

Even for Cp and other fields with residue field Fp, there can be
wandering domains not associated with type II periodic points.

Theorem (RB, 2002)

Let CK have residue characteristic p > 0.
Then there is a parameter a ∈ CK (in fact, a dense set of such
parameters in CK r D(0, 1)) such that

φa(z) := (1 − a)zp+1 + azp

has a wandering domain not in the attracting basin of a periodic
type II point.

(Idea of Proof: see Project #4)



Other Ways to Break the Hypotheses

What if we stick to K locally compact?



Other Ways to Break the Hypotheses

What if we stick to K locally compact?
It is easy to force a wild critical point into the Julia set.

Example. 0 < |π| < 1, and φ(z) = π−1(zp+1 − zp) + 1, which
maps 0 7→ 1 7→ 1, with 0 wild critical and 1 repelling fixed.



Other Ways to Break the Hypotheses

What if we stick to K locally compact?
It is easy to force a wild critical point into the Julia set.

Example. 0 < |π| < 1, and φ(z) = π−1(zp+1 − zp) + 1, which
maps 0 7→ 1 7→ 1, with 0 wild critical and 1 repelling fixed.

What about wild recurrent Julia critical points?



Other Ways to Break the Hypotheses

What if we stick to K locally compact?
It is easy to force a wild critical point into the Julia set.

Example. 0 < |π| < 1, and φ(z) = π−1(zp+1 − zp) + 1, which
maps 0 7→ 1 7→ 1, with 0 wild critical and 1 repelling fixed.

What about wild recurrent Julia critical points?

Theorem (Rivera-Letelier, 2005)

Let K be a complete non-archimedean field of residue
characteristic p. Then there are polynomials φ ∈ K [z ] with wild
recurrent Julia critical points.

Proof. See project #4.



Other Ways to Break the Hypotheses

What if we stick to K locally compact?
It is easy to force a wild critical point into the Julia set.

Example. 0 < |π| < 1, and φ(z) = π−1(zp+1 − zp) + 1, which
maps 0 7→ 1 7→ 1, with 0 wild critical and 1 repelling fixed.

What about wild recurrent Julia critical points?

Theorem (Rivera-Letelier, 2005)

Let K be a complete non-archimedean field of residue
characteristic p. Then there are polynomials φ ∈ K [z ] with wild
recurrent Julia critical points.

Proof. See project #4.

In both cases (char K = p > 0 with wild Julia critical points, or
char K = 0 with wild recurrent Julia critical points), we don’t know
whether there can be wandering domains.


