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1 Definitions and Notations

1. Let N be a positive integer. The special linear group SLy(Z) has subgroups I'(N), To(N), and T’y (IV)

defined as
(a b] (@ b (1 0]
I'(N) = { ¢ dl € SLo(Z) - c d=lo 1 (mod N)}
- b: - b -
FO(N)_{ ‘c‘ 4| €8L2(2) “CL = E“) (mod N)}
- b: - b :1
Fl(N):{CCL 4| €5L2(2) : i =1 j (modN)}.

The subgroup I'(V) is called the principal congruence modular subgroup of level N and the subgroups
To(N) and T'1(N) are called modular groups of Hecke type.

2. A subgroup T of SLy(Z) is a congruence subgroup if T'(N) C T for some N € Z", in which case T is a
congruence subgroup of level N.

2 Introductory Problems

Problem 1. Show that any congruence subgroup I' C SLy(Z) has finite index.
Problem 2. Show that I'(N) C T';(N) C To(N).

Problem 3. Let v € SLy(Z) reduce to a matrix of the form g g modulo N, where «,§ are relatively
prime to N. Show that I'(N),To(N), and 'y (V) are each closed under conjugation by ~.

—1
Problem 4. Show that I';(N?) C (](\)[ (1)> I'(N) <]87 (1))
Problem 5. Show that the map I'o(N) — (Z/NZ)* given by
@b —d (mod N)
c d

is a group homomorphism.



3 Intermediate Problems

Problem 6 (Lifting an element of SLy(Z/NZ); Diamond & Shurman, Exercise 1.2.2). Given an integer
N > 1, we defined the principal congruence subgroup mod N as a kernel of reduction,

[(N) = ker(SLy(Z) — SLy(Z/NZ)).

The goal of this problem is to show that this reduction map is also surjective. Note this would imply that
the index

[SLa(Z) : T(N)] = #SLa(Z/NZ).
Z , we know that ad — bc =1 (mod N). We
wish to lift this to a matrix 7/ € SLa(Z), thereby showing that the reduction of 4" modulo N is ~.

Let v € SLo(Z/NZ) be a matrix. Writing it as v = {Z

a. First, we suppose that ¢ # 0. Show that ged(c,d, N) = 1, and that there exist ¢/,d’ € Z with ¢/ = ¢
(mod N), d =d (mod N) and ged(c/,d’) = 1. (Hint: use the Chinese remainder theorem to construct
x € Z with =1 (mod p) for p | ged(e,d), and x =0 (mod p) for p | ¢ but ptd.)

b. Show that there exist a’,b" € Z with a’ = a (mod N), b’ =b (mod N) and o’d’ — b'¢’ = 1. Use this to
construct a lift of v in SLy(Z). (Hint: start with computing o’d’ — b'¢’ = 1 for arbitrary o’ = a + ulN
and b’ = b+ vN with u,v € Z, and then determine which u,v would work, utilizing that ad’ — b’ = 1
mod N and ged(e,d) =1.)

c. Assuming ¢ = 0, construct a lift of v in SLy(Z).

Problem 7 (Diamond & Shurman, Exercise 1.2.3).

1. Show that the map I';(N) — Z/NZ given by {CCL b] — b (mod N) surjects and has kernel I'(V).

d

b

2. Show that the map I'g(N) — (Z/NZ)* given by {CCL d

} — d (mod N) surjects and has kernel I'y (V).

Problem 8 (Also Diamond & Shurman, Exercise 1.2.3).
1. Show that [[o(N) : I'1(N)] = ¢(N), where ¢ : ZT — Z* is Euler’s totient function.!

2. Using equation (1) from Problem 13, show that [SLo(Z) : To(N)] = N H(l +1/p).
pIN

Problem 9 (Computing the size of GLy(F,)). For a prime power ¢ € Z", let us use F, to denote the finite
field of size q.
For a prime power ¢ € Z" and integer n € Z™, show that the cardinality

#GL,(Fy) = [[(¢" — ")
k=1

Hint: A matrix v € M, «,(F,) is invertible iff its rows are linearly independent over F,,.
q q

Problem 10 (Automorphism group over a finite product of rings). Recall that any ring R has its group of
automorphisms
Aut(R) := {isomorphisms ¢ : R = R}.

a. Suppose R1,..., R, are commutative rings with coprime positive characteristic.? Show that the auto-
morphism group of their product is the product of their automorphism groups,

Aut(Ry x ... X Ry) 2 Aut(Ry) X ... X Aut(R,).

IEuler’s totient function is usually defined via the following: ¢(NN) counts the number of integers between 1 and N which are
coprime to N. It is a multiplicative function — meaning ¢(ab) = ¢(a)p(b) if ged(a,b) = 1 — and is such that ¢(N) = #(Z/NZ)*.

2Recall that the characteristic of a ring R is the least integer p € Z1 for which pr = 0 for all » € R. If no such p exists, we
set p = 0 and say that R has characteristic zero.




b. Show that for a commutative ring R and an integer n € Z™, one has

Aut(R") 2 GL,(R).

c. Find an example of rings R and S for which
Aut(R x S) % Aut(R) x Aut(9)

(Hint: The ring homomorphisms we are considering must take multiplicative identities to multiplicative
identities).

Problem 11.

a. For any integer N > 1, show that the matrices
1 1 1 0
0 1|’ 11

b. Let M > 1 be another integer, and assume M is not divisible by 2 or 3. Show that there are no
nontrivial homomorphisms

generate SLo(Z/NZ).

SLy(Z/NZ) — Z/MZ.

If M is divisible by 2 or 3, then there are such homomorphisms, and they all factor through SLs(Z/NyZ)
for some Ny € {2,3,4,6,12}. Can you find all such homomorphisms SLo(Z/NoZ) — Z/MZ for these

Ny’s? (Hint: Where would a matrix
a 0|1 b][a 0]
0 1((0 1|0 1

Problem 12. Let p be a prime number. Let M(Z/pZ) be the additive group of 2 by 2 matrices with
coefficients in Z/pZ. If n > 0 is an integer, show that I'(p")/T'(p"*!) is isomorphic to the subgroup of
matrices in Ms(Z/pZ) of trace zero. [Hint: Build a map in the opposite direction as follows: Describe
I(p™)/T(p™*!) as a subgroup of SLy(Z/p"T1Z). Then send a trace zero matrix M in My(Z/pZ) to 1+p™M.]

be sent under such a homomorphism?)

4 Advanced Problems

Problem 13 (Computing the size of SLo(Z/NZ)). This exercise will determine the cardinality of the group
SLo(Z/NZ) for any integer N > 1,

#SLy(Z/NZ) = N* [ | (1 - p12> . (1)

p|N

a. Show that the determinant map det : GLo(Z/NZ) — (Z/NZ)* gives a short exact sequence®

1 — SLy(Z/NZ) — GLo(Z/NZ) 2% (Z/NZ)* — 1.

Deduce that the size # GLy(Z/NZ)
SLy(Z/NZ) = 72222

where ¢ : ZT — Z* is Euler’s totient function.

3In a short exact sequence of groups, each arrow is a group homomorphism, and at each group the image of the preceding
map is the kernel of the proceeding map.



b. Using Problem 10 and the Chinese remainder theorem, show that for any integer N € Z™T, if its
factorization into distinct prime powers is

€n

N:p(flpn

then one has
GL2(Z/NZ) = GLo(Z/pS*Z) X ... x GLa(Z/p*"Z).

¢. Combining the two previous parts, to compute # SLy(Z/NZ) it suffices to compute both ¢(p¢) and
# GLo(Z/p°Z) for each prime power p¢ > 1 that divides N.

Show there exists a short exact sequence of groups
1 — K — GL2(Z/p°Z) — GL3(Z/pZ) — 1,

and determine K explicitly.
d. Compute #K, and then use Problem 9 to determine what # GL3(Z/p°Z) is.
e. Deduce that for a prime power p® € Z™, one has

#SLa(Z/p°Z) = p™ 2 (p* — 1)

Show that for any integer N € Z™, equation (1) holds.

f. Using Problem 6, compute the index [SL2(Z) : I'(N)] explicitly.

Problem 14. In the previous problem set we showed that the subgroup of SLs(Z) generated by

EE N

is freely generated by those elements. Let us call this group F. Show that F' is a congruence subgroup. (In
fact, it contains I'(4).)

Problem 15. Continuing with the notation of Problem 14, let M > 0 be an integer and let ¢ : F — Z/MZ
be any surjective homomorphism. For example, we can define such a homomorphism on generators by

declaring
o([2 ) = tmotar, s[5 2]) om .

If M is not divisible by 2 or 3 and sufficiently large, show then that the kernel K of ¢ is a subgroup of
SLo(Z) which is of finite index and not congruence. (Hints: Argue by contradiction; if K contains I'(N) for
some N, consider the map ¢ induces on I'(4) /T (N). Use the Chinese remainder theorem to decompose this
group based on the prime factorization of N, similarly to Problem 13 b. Then appeal to Problems 11 and
12, using the latter when p = 2.)



