AWS 2021: Modular Groups
 Problem Set 2

Lecturer: Lori Watson

Written by: Tyler Genao, Hyun Jong Kim, Zonia Menendez and Sam Mundy (Assistants)
Last updated: February 4, 2021

1 Definitions and Notations

1. Let N be a positive integer. The special linear group $\mathrm{SL}_{2}(\mathbb{Z})$ has subgroups $\Gamma(N), \Gamma_{0}(N)$, and $\Gamma_{1}(N)$ defined as

$$
\begin{aligned}
& \Gamma(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad(\bmod N)\right\} \\
& \Gamma_{0}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
* & * \\
0 & *
\end{array}\right] \quad(\bmod N)\right\} \\
& \Gamma_{1}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right] \quad(\bmod N)\right\} .
\end{aligned}
$$

The subgroup $\Gamma(N)$ is called the principal congruence modular subgroup of level N and the subgroups $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$ are called modular groups of Hecke type.
2. A subgroup Γ of $\mathrm{SL}_{2}(\mathbb{Z})$ is a congruence subgroup if $\Gamma(N) \subset \Gamma$ for some $N \in \mathbb{Z}^{+}$, in which case Γ is a congruence subgroup of level N.

2 Introductory Problems

Problem 1. Show that any congruence subgroup $\Gamma \subseteq \mathrm{SL}_{2}(\mathbb{Z})$ has finite index.
Problem 2. Show that $\Gamma(N) \subset \Gamma_{1}(N) \subset \Gamma_{0}(N)$.
Problem 3. Let $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ reduce to a matrix of the form $\left[\begin{array}{cc}\alpha & 0 \\ 0 & \delta\end{array}\right]$ modulo N, where α, δ are relatively prime to N. Show that $\Gamma(N), \Gamma_{0}(N)$, and $\Gamma_{1}(N)$ are each closed under conjugation by γ.
Problem 4. Show that $\Gamma_{1}\left(N^{2}\right) \subset\left(\begin{array}{cc}N & 0 \\ 0 & 1\end{array}\right)^{-1} \Gamma(N)\left(\begin{array}{cc}N & 0 \\ 0 & 1\end{array}\right)$.
Problem 5. Show that the map $\Gamma_{0}(N) \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$given by

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto d \quad(\bmod N)
$$

is a group homomorphism.

3 Intermediate Problems

Problem 6 (Lifting an element of $\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$; Diamond \& Shurman, Exercise 1.2.2). Given an integer $N>1$, we defined the principal congruence subgroup $\bmod N$ as a kernel of reduction,

$$
\Gamma(N):=\operatorname{ker}\left(\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})\right)
$$

The goal of this problem is to show that this reduction map is also surjective. Note this would imply that the index

$$
\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma(N)\right]=\# \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})
$$

Let $\gamma \in \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ be a matrix. Writing it as $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, we know that $a d-b c \equiv 1(\bmod N)$. We wish to lift this to a matrix $\gamma^{\prime} \in \mathrm{SL}_{2}(\mathbb{Z})$, thereby showing that the reduction of γ^{\prime} modulo N is γ.
a. First, we suppose that $c \neq 0$. Show that $\operatorname{gcd}(c, d, N)=1$, and that there exist $c^{\prime}, d^{\prime} \in \mathbb{Z}$ with $c^{\prime} \equiv c$ $(\bmod N), d^{\prime} \equiv d(\bmod N)$ and $\operatorname{gcd}\left(c^{\prime}, d^{\prime}\right)=1$. (Hint: use the Chinese remainder theorem to construct $x \in \mathbb{Z}$ with $x \equiv 1(\bmod p)$ for $p \mid \operatorname{gcd}(c, d)$, and $x \equiv 0(\bmod p)$ for $p \mid c$ but $p \nmid d$.)
b. Show that there exist $a^{\prime}, b^{\prime} \in \mathbb{Z}$ with $a^{\prime} \equiv a(\bmod N), b^{\prime} \equiv b(\bmod N)$ and $a^{\prime} d^{\prime}-b^{\prime} c^{\prime}=1$. Use this to construct a lift of γ in $\mathrm{SL}_{2}(\mathbb{Z})$. (Hint: start with computing $a^{\prime} d^{\prime}-b^{\prime} c^{\prime}=1$ for arbitrary $a^{\prime}=a+u N$ and $b^{\prime}=b+v N$ with $u, v \in \mathbb{Z}$, and then determine which u, v would work, utilizing that $a d^{\prime}-b c^{\prime} \equiv 1$ $\bmod N$ and $\operatorname{gcd}(c, d)=1$.)
c. Assuming $c=0$, construct a lift of γ in $\mathrm{SL}_{2}(\mathbb{Z})$.

Problem 7 (Diamond \& Shurman, Exercise 1.2.3).

1. Show that the map $\Gamma_{1}(N) \longrightarrow \mathbb{Z} / N \mathbb{Z}$ given by $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \mapsto b(\bmod N)$ surjects and has kernel $\Gamma(N)$.
2. Show that the map $\Gamma_{0}(N) \longrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$given by $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \mapsto d(\bmod N)$ surjects and has kernel $\Gamma_{1}(N)$.

Problem 8 (Also Diamond \& Shurman, Exercise 1.2.3).

1. Show that $\left[\Gamma_{0}(N): \Gamma_{1}(N)\right]=\phi(N)$, where $\phi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$is Euler's totient function. ${ }^{1}$
2. Using equation (1) from Problem 13, show that $\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]=N \prod_{p \mid N}(1+1 / p)$.

Problem 9 (Computing the size of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$). For a prime power $q \in \mathbb{Z}^{+}$, let us use \mathbb{F}_{q} to denote the finite field of size q.

For a prime power $q \in \mathbb{Z}^{+}$and integer $n \in \mathbb{Z}^{+}$, show that the cardinality

$$
\# \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)=\prod_{k=1}^{n}\left(q^{n}-q^{k-1}\right)
$$

(Hint: A matrix $\gamma \in M_{n \times n}\left(\mathbb{F}_{q}\right)$ is invertible iff its rows are linearly independent over \mathbb{F}_{q}.)
Problem 10 (Automorphism group over a finite product of rings). Recall that any ring R has its group of automorphisms

$$
\operatorname{Aut}(R):=\{\text { isomorphisms } \varphi: R \xrightarrow{\sim} R\} .
$$

a. Suppose R_{1}, \ldots, R_{n} are commutative rings with coprime positive characteristic. ${ }^{2}$ Show that the automorphism group of their product is the product of their automorphism groups,

$$
\operatorname{Aut}\left(R_{1} \times \ldots \times R_{n}\right) \cong \operatorname{Aut}\left(R_{1}\right) \times \ldots \times \operatorname{Aut}\left(R_{n}\right)
$$

[^0]b. Show that for a commutative ring R and an integer $n \in \mathbb{Z}^{+}$, one has
$$
\operatorname{Aut}\left(R^{n}\right) \cong \operatorname{GL}_{n}(R)
$$
c. Find an example of rings R and S for which
$$
\operatorname{Aut}(R \times S) \nsubseteq \operatorname{Aut}(R) \times \operatorname{Aut}(S)
$$
(Hint: The ring homomorphisms we are considering must take multiplicative identities to multiplicative identities).

Problem 11.

a. For any integer $N>1$, show that the matrices

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

generate $\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$.
b. Let $M \geq 1$ be another integer, and assume M is not divisible by 2 or 3 . Show that there are no nontrivial homomorphisms

$$
\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) \rightarrow \mathbb{Z} / M \mathbb{Z}
$$

If M is divisible by 2 or 3 , then there are such homomorphisms, and they all factor through $\mathrm{SL}_{2}\left(\mathbb{Z} / N_{0} \mathbb{Z}\right)$ for some $N_{0} \in\{2,3,4,6,12\}$. Can you find all such homomorphisms $\mathrm{SL}_{2}\left(\mathbb{Z} / N_{0} \mathbb{Z}\right) \rightarrow \mathbb{Z} / M \mathbb{Z}$ for these N_{0} 's? (Hint: Where would a matrix

$$
\left[\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right]^{-1}
$$

be sent under such a homomorphism?)
Problem 12. Let p be a prime number. Let $M_{2}(\mathbb{Z} / p \mathbb{Z})$ be the additive group of 2 by 2 matrices with coefficients in $\mathbb{Z} / p \mathbb{Z}$. If $n>0$ is an integer, show that $\Gamma\left(p^{n}\right) / \Gamma\left(p^{n+1}\right)$ is isomorphic to the subgroup of matrices in $M_{2}(\mathbb{Z} / p \mathbb{Z})$ of trace zero. [Hint: Build a map in the opposite direction as follows: Describe $\Gamma\left(p^{n}\right) / \Gamma\left(p^{n+1}\right)$ as a subgroup of $\mathrm{SL}_{2}\left(\mathbb{Z} / p^{n+1} \mathbb{Z}\right)$. Then send a trace zero matrix M in $M_{2}(\mathbb{Z} / p \mathbb{Z})$ to $1+p^{n} M$.]

4 Advanced Problems

Problem 13 (Computing the size of $\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$). This exercise will determine the cardinality of the group $\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ for any integer $N \geq 1$,

$$
\begin{equation*}
\# \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})=N^{3} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right) \tag{1}
\end{equation*}
$$

a. Show that the determinant map det : $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$gives a short exact sequence ${ }^{3}$

$$
1 \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \xrightarrow{\text { det }}(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow 1
$$

Deduce that the size

$$
\# \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})=\frac{\# \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})}{\phi(N)}
$$

where $\phi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$is Euler's totient function.

[^1]b. Using Problem 10 and the Chinese remainder theorem, show that for any integer $N \in \mathbb{Z}^{+}$, if its factorization into distinct prime powers is
$$
N=p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}
$$
then one has
$$
\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \cong \mathrm{GL}_{2}\left(\mathbb{Z} / p_{1}^{e_{1}} \mathbb{Z}\right) \times \ldots \times \mathrm{GL}_{2}\left(\mathbb{Z} / p^{e_{n}} \mathbb{Z}\right)
$$
c. Combining the two previous parts, to compute $\# \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ it suffices to compute both $\phi\left(p^{e}\right)$ and $\# \mathrm{GL}_{2}\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)$ for each prime power $p^{e}>1$ that divides N.
Show there exists a short exact sequence of groups
$$
1 \rightarrow K \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / p^{e} \mathbb{Z}\right) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z}) \rightarrow 1
$$
and determine K explicitly.
d. Compute $\# K$, and then use Problem 9 to determine what $\# \mathrm{GL}_{2}\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)$ is.
e. Deduce that for a prime power $p^{e} \in \mathbb{Z}^{+}$, one has
$$
\# \mathrm{SL}_{2}\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)=p^{3 e-2}\left(p^{2}-1\right)
$$

Show that for any integer $N \in \mathbb{Z}^{+}$, equation (1) holds.
f. Using Problem 6, compute the index $\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma(N)\right]$ explicitly.

Problem 14. In the previous problem set we showed that the subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ generated by

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

is freely generated by those elements. Let us call this group F. Show that F is a congruence subgroup. (In fact, it contains $\Gamma(4)$.)
Problem 15. Continuing with the notation of Problem 14, let $M>0$ be an integer and let $\phi: F \rightarrow \mathbb{Z} / M \mathbb{Z}$ be any surjective homomorphism. For example, we can define such a homomorphism on generators by declaring

$$
\phi\left(\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\right)=1 \bmod M, \quad \phi\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\right)=0 \bmod M
$$

If M is not divisible by 2 or 3 and sufficiently large, show then that the kernel K of ϕ is a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ which is of finite index and not congruence. (Hints: Argue by contradiction; if K contains $\Gamma(N)$ for some N, consider the map ϕ induces on $\Gamma(4) / \Gamma(N)$. Use the Chinese remainder theorem to decompose this group based on the prime factorization of N, similarly to Problem 13 b. Then appeal to Problems 11 and 12 , using the latter when $p=2$.)

[^0]: ${ }^{1}$ Euler's totient function is usually defined via the following: $\phi(N)$ counts the number of integers between 1 and N which are coprime to N. It is a multiplicative function - meaning $\phi(a b)=\phi(a) \phi(b)$ if $\operatorname{gcd}(a, b)=1-$ and is such that $\phi(N)=\#(\mathbb{Z} / N \mathbb{Z})^{\times}$.
 ${ }^{2}$ Recall that the characteristic of a ring R is the least integer $p \in \mathbb{Z}^{+}$for which $p r=0$ for all $r \in R$. If no such p exists, we set $p=0$ and say that R has characteristic zero.

[^1]: ${ }^{3}$ In a short exact sequence of groups, each arrow is a group homomorphism, and at each group the image of the preceding map is the kernel of the proceeding map.

