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1 Definitions and Notations

1. Recall that we have an extended upper half plane H∗, or H∗, via adding a projective line to H,

H∗ := H ∪ P1(Q) := H ∪Q ∪ {∞}.

Here, we can regard our elements of H ⊆ H∗ as column vectors

[
τ
1

]
. We regard elements of Q∪{∞} as

equivalence classes of column vectors: a rational number a/b ∈ Q is regarded as

[
a
b

]
, and is equivalent

to

[
ra
rb

]
for all r ∈ Q×. We also set ∞ :=

[
1
0

]
.

2. Via matrix multiplication, we have an action of SL2(Z) on H∗ which extends the usual action on H:

for γ :=

[
a b
c d

]
∈ SL2(Z) and

[
x
y

]
∈ H∗, we set

γ ·
[
x
y

]
:=

ax+ by

cx+ dy
.

3. For any congruence subgroup Γ ⊆ SL2(Z), we also have that Γ acts on H∗. The orbits of P(Q) under
Γ are called the cusps of Γ.

4. Let X and Y be Riemann surfaces and f : X → Y a nonconstant holomorphic map.

Fix x ∈ X, and set y = f (x). If u and t are local parameters1 at x and y, respectively, which map x
and y to the origin, then in some neighborhood of x we can express f in the form

t(f(z)) = aeu(z)e + aε+1u(z)c+1 + · · · , aε 6= 0

for some positive integer e. This integer is independent of the choice of u and t. It is called the
ramification index of the covering map f at x. If e > 1, then x is said to be a ramified point of f , and
that y ramifies in X under f .

The following definitions concern a generalization of modular groups, called Fuchsian groups. They will be
used in Problems 5, 6, 10 and 19.

5. A Fuchsian group is a discrete subgroup of SL2(R). In particular, SL2(Z) and all of its subgroups are
Fuchsian groups.

1In particular, for some open subsets U,U ′ ⊂ Y , one has that u : U → C and t : U ′ → C are maps which are homeomorphic
onto their images, and the transition maps u ◦ t−1 : t(U ∩ U ′) → u(U ∩ U ′) and t ◦ u−1 : u(U ∩ U ′) → t(U ∩ U ′) are both
holomorphic maps.
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6. A non-scalar element of α of GL+
2 (R) is called elliptic, parabolic, or hyperbolic when it satisfies

tr(α)2 < 4 det(α), tr(α)2 = 4 det(α), or tr(α)2 > 4 det(α)

respectively.

7. A Fuchsian group Γ acts on H∪R∪ {∞} via linear fractional transformations. One can show that an
element α ∈ Γ is:

• elliptic if and only if α has fixed points z0 and z0 for some z0 ∈ H;

• parabolic if and only if α has a unique fixed point on R ∪ {∞};
• hyperbolic if and only if α has two distinct fixed points on R ∪ {∞}.

8. Fix a Fuchsian group Γ, and let z ∈ H ∪ R ∪ {∞}. We call z an elliptic point, parabolic point, or
hyperbolic point of Γ if there is some elliptic/parabolic/hyperbolic element of Γ fixing z, respectively.

9. Fix a Fuchsian group Γ.

• Let PΓ denote the set of parabolic points of Γ. Elements of PΓ are sometimes called cusps of Γ.

• The space H∗ denotes H ∪ PΓ.

• The space X(Γ) denotes the quotient space Γ\H∗.

10. Fix a Fuchsian group Γ, and let π : H∗ → Γ\H∗ = X(Γ) be the quotient map. A point a ∈ X(Γ) is
called an elliptic point or a cusp, respectively, when there is a lift z ∈ H∗ of a that is either an elliptic
point or a cusp for Γ. When a is neither an elliptic point nor a cusp, it is called an ordinary point.

2 Introductory Problems

Problem 1. Determine the stabilizers of i, ζ3 and ∞ under SL2(Z), where ζ3 := −1+
√
−3

2 .

Problem 2.

a. Prove that SL2(Z) has exactly one cusp.

b. Show that any congruence subgroup Γ ⊆ SL2(Z) has finitely many cusps.

Problem 3. SL2(Z) acts on H properly discontinuously. In other words, for any two points x, y of H,
there exist neighborhoods U and V of x and y, respectively, such that #{γ ∈ SL2(Z) : γU ∩ V 6= ∅} < ∞.
Convince yourself that this is the case.

Problem 4.

1. Show that C is a Riemann surface.

2. At what points is the map C→ C, z 7→ z2 ramified?

Problem 5. Let α ∈ GL+
2 (R) be a non-scalar element. Show that the listed definitions for α to be

elliptic/parabolic/hyperbolic are indeed equivalent.

Problem 6. Let Γ be a Fuchsian group and α ∈ Γ a non-scalar element.

1. Show that if α is an elliptic/parabolic/hyperbolic element of Γ, then for any γ ∈ Γ, γαγ−1 is also an
elliptic/parabolic/hyperbolic element, respectively.

2. How do the fixed points of α and γαγ−1 compare?

Problem 7. Show that homothetic lattices have equal j-invariants.

Problem 8. The j-function has a Laurent series expansion in terms of q := e2πiτ ,

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + 864229970q3 + 20245856256q4 + 333202640600q5 + . . .

By the theory of complex multiplication, one has for imaginary quadratic τ ∈ H that j(τ) is an algebraic

integer. Assuming that j( 1+
√
−163
2 ) ∈ Z, use this j-function expansion to show that eπ

√
163 is very close to

an integer.
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3 Intermediate Problems

Problem 9 (Diamond & Shurman, Exercise 3.1.4). Show that for a prime p ∈ Z+, Γ0(p) has exactly two
cusps.

Problem 10.

a. Show that every elliptic element of SL2(Z) is of order dividing 4 or 6.

b. What elements of SL2(Z) represent the conjugacy classes of elliptic elements?

c. What are the elliptic points of SL2(Z)?

Problem 11 (Miyake, Lemma 1.7.1). Let G be a topological group acting continuously on X. Assume that
for any two points x, y of X, there exist neighborhoods U of x and V of y such that gU ∩V = ∅ for all g ∈ G
satisfying x 6= y. Show that G\X is a Hausdorff space.

Problem 12.

1. Show that the projective line CP1 := P1(C) is a Riemann surface.

2. There is a map CP1 → CP1 given by [s : t] 7→ [s2 : t2]. Where is this map ramified, and what
ramification indices does it have at those points?

3. Do the same for the map CP1 → CP1 given by [s : t] 7→ [s2(s− t) : t3].

Problem 13 (Cyclic isogenies). Let C/Λ be a complex elliptic curve. An isogeny ϕ : C/Λ1 → C/Λ2 is
called cyclic if its kernel {z + Λ1 ∈ C/Λ1 : z ∈ Λ2} is a cyclic subgroup of C/Λ1.

a. Show that a cyclic subgroup C ⊆ C/Λ induces a cyclic isogeny C/Λ → C/C0 with kernel C for some
superlattice2 C0 of Λ.

b. Show that any isogeny ϕ : C/Λ1 → C/Λ2 factors as a multiplication-by-n map followed by a cyclic
isogeny.

The following four exercises are related to (complex) elliptic curves with complex multiplication, see Problem
11 of Problem Set 3.

Problem 14. Recall that an order O of a number field K is a subring of the ring of integers OK of equal
Z-rank. Equivalently, O is a subring of OK with its own Z-basis of algebraic integers. One has that the
index [OK : O] <∞.

a. Show that an order in an imaginary quadratic field K = Q(
√
−d) with squarefree d ∈ Z+ has the form

O = [1, fωK ]

where

ωK :=

{
1+
√
−d

2 if d ≡ 3 (mod 4)√
−d if d ≡ 1, 2 (mod 4)

and f = [OK : O].

b. Show that for each integer f ∈ Z+, the lattice Of := [1, fωK ] is an order of K with index f in OK .

Problem 15. Let C/Λ be a complex elliptic curve with CM. Then its endomorphism ring O := End(C/Λ)
is an order in an imaginary quadratic number field K.

For an endomorphism α ∈ End(C/Λ), we write (C/Λ)[α] for its kernel kerφα = α−1Λ/Λ. We call this
the α-torsion subgroup of C/Λ.

Let us assume the following fact: as O-modules, we have for α ∈ End(C/Λ) that

(C/Λ)[α] ∼=O O/αO.

Then show that the degree of an endomorphism α ∈ End(C/Λ) is the absolute value of its field-theoretic
norm, deg(φα) = |NmK/Q(α)|.

2A superlattice of Λ is less fun than it sounds: it is just a lattice which contains Λ. Compare this word to sublattice.
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Problem 16. Show that for two isogenous complex elliptic curves C/Λ1 and C/Λ2, C/Λ1 has CM iff C/Λ2

has CM.

Problem 17.

a. Show that if a lattice Λ ⊆ C is homothetic to its complex conjugate Λ, then j(Λ) ∈ R. (In fact, this is
if and only if.)

b. Show that if O is an order in an imaginary quadratic number field, then j(O) ∈ R.

c. Conclude that for any imaginary quadratic order O, there is some complex elliptic curve C/Λ with
CM by O and whose j-invariant is a real number. (Hint: assume that Problem 11.c on Problem Set 3
works if we replace OK with O.)

4 Advanced Problems

Problem 18. Let f : X → Y be a nonconstant holomorphic map of compact Riemann surfaces.

a. Show that f is surjective.

b. Show that f has finite fibers: that is, for all y ∈ Y one has #f−1(y) <∞.

Note that there is analogous statement in algebraic geometry: any nonconstant morphism φ : C1 → C2 of
projective algebraic curves is surjective and has finite fibers.

Problem 19. This problem will construct a Fuchsian group which has no cusps.

a. Consider the following real 2 by 2 matrices:

α =

(
0 −1
1 0

)
, β =

(√
3 0

0 −
√

3

)
, γ =

1

2
(1 + α+ β + αβ).

(In the definition of γ, the element 1 is being used to denote the identity matrix.) Show that

O = Z⊕ Zα⊕ Zβ ⊕ Zγ

is a (noncommutative but unital) subring of the ring M2(R) of 2 by 2 real matrices. This is a quaternion
algebra, as the elements α and β satisfy

α2 = −1, β2 = 3, αβ = −βα.

b. Consider the conjugation on O given for any element of the form

a = a0 + a1α+ a2β + a3αβ ∈ O

by
ā = a0 − a1α− a2β − a3αβ.

Show that conjugation a 7→ ā defines a ring automorphism of O.

c. For any a ∈ O, show that
a+ ā = tr(a), aā = det(a).

Here, tr and det are the usual trace and determinant operations on matrices.

d. Let
O1 = {a ∈ O : aā = 1}.

Show that O1 is a Fuchsian group with no cusps. (Hint: Write a as in part b., and write down the
condition that a would satisfy if it were parabolic explicitly in a0, a1, a2, a3. Then do a “descent”
procedure by looking modulo 3.)

One can use this problem to show that O1\H is a compact Riemann surface.
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