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1 Definitions and Notations
1. Recall that we have an extended upper half plane H*, or H*, via adding a projective line to H,
H* = HUPHQ) := HUQU {cc}.
Here, we can regard our elements of %/ C H* as column vectors {ﬂ . We regard elements of QU{oo} as

equivalence classes of column vectors: a rational number a/b € Q is regarded as {Z} , and is equivalent

ra % 1
to [rb] for all r € Q*. We also set oo := [O}

2. Via matrix multiplication, we have an action of SLy(Z) on H* which extends the usual action on H:

for v := [OCL Z] € SLy(Z) and {ﬂ € H*, we set

x| ax+by
Ty e+ dy’

3. For any congruence subgroup I' C SLy(Z), we also have that T" acts on H*. The orbits of P(Q) under
I" are called the cusps of T'.
4. Let X and Y be Riemann surfaces and f : X — Y a nonconstant holomorphic map.

Fix x € X, and set y = f (x). If u and ¢ are local parameters' at x and y, respectively, which map z
and y to the origin, then in some neighborhood of x we can express f in the form

t(f(2)) = aeu(2)® + acpru(2) +--- ) ac#0

for some positive integer e. This integer is independent of the choice of u and ¢. It is called the
ramification index of the covering map f at x. If e > 1, then z is said to be a ramified point of f, and
that y ramifies in X under f.

The following definitions concern a generalization of modular groups, called Fuchsian groups. They will be
used in Problems 5, 6, 10 and 19.

5. A Fuchsian group is a discrete subgroup of SLy(R). In particular, SLo(Z) and all of its subgroups are
Fuchsian groups.

n particular, for some open subsets U, U’ C Y, one has that w : U — C and t : U’ — C are maps which are homeomorphic
onto their images, and the transition maps uo ¢t~ : {UNU’) — w(UNU’) and tou™! : w(UNU’') — (U NU’) are both
holomorphic maps.



6. A non-scalar element of o of GL3 (R) is called elliptic, parabolic, or hyperbolic when it satisfies
tr(a)? < 4det(a), tr(a)®>=4det(a), or tr(a)? > 4det(a)
respectively.

7. A Fuchsian group I" acts on HUR U {oo} via linear fractional transformations. One can show that an
element o € T is:
e elliptic if and only if « has fixed points zy and Z for some zg € H;
e parabolic if and only if & has a unique fixed point on R U {co};
e hyperbolic if and only if « has two distinct fixed points on R U {co}.

8. Fix a Fuchsian group T, and let z € H UR U {oco}. We call z an elliptic point, parabolic point, or
hyperbolic point of T if there is some elliptic/parabolic/hyperbolic element of T' fixing z, respectively.

9. Fix a Fuchsian group I'.

e Let Pr denote the set of parabolic points of I'. Elements of Pr are sometimes called cusps of T'.
e The space H* denotes H U Pr.
e The space X(T') denotes the quotient space I'\H*.
10. Fix a Fuchsian group I, and let 7 : H* — I'\H* = X(I") be the quotient map. A point a € X(I') is
called an elliptic point or a cusp, respectively, when there is a lift z € H* of a that is either an elliptic
point or a cusp for I'. When « is neither an elliptic point nor a cusp, it is called an ordinary point.

2 Introductory Problems

Problem 1. Determine the stabilizers of i, (5 and co under SLs(Z), where (3 :=
Problem 2.

—14+v/=3
——.

a. Prove that SLy(Z) has exactly one cusp.

b. Show that any congruence subgroup I' C SLy(Z) has finitely many cusps.

Problem 3. SL;(Z) acts on H properly discontinuously. In other words, for any two points z,y of H,
there exist neighborhoods U and V of x and y, respectively, such that #{y € SLy(Z) : YU NV # 0} < .
Convince yourself that this is the case.

Problem 4.

1. Show that C is a Riemann surface.

2. At what points is the map C — C, z — 22 ramified?

Problem 5. Let a € GLj(R) be a non-scalar element. Show that the listed definitions for a to be
elliptic/parabolic/hyperbolic are indeed equivalent.

Problem 6. Let I' be a Fuchsian group and « € I' a non-scalar element.

1. Show that if « is an elliptic/parabolic/hyperbolic element of ', then for any v € T', yay~! is also an

elliptic/parabolic/hyperbolic element, respectively.
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2. How do the fixed points of a and yay™" compare?

Problem 7. Show that homothetic lattices have equal j-invariants.

Problem 8. The j-function has a Laurent series expansion in terms of g := e*™",
1
jr) = 4 + 744 + 196884 + 214937604 + 864229970¢> + 20245856256¢" + 333202640600¢° + . . .

By the theory of complex multiplication, one has for imaginary quadratic 7 € H that j(7) is an algebraic

1+\/—163) 163
2

integer. Assuming that j( € Z, use this j-function expansion to show that e™ is very close to

an integer.



3 Intermediate Problems
Problem 9 (Diamond & Shurman, Exercise 3.1.4). Show that for a prime p € Z*, I'g(p) has exactly two
cusps.
Problem 10.
a. Show that every elliptic element of SLy(Z) is of order dividing 4 or 6.
b. What elements of SLy(Z) represent the conjugacy classes of elliptic elements?

c. What are the elliptic points of SLy(Z)?

Problem 11 (Miyake, Lemma 1.7.1). Let G be a topological group acting continuously on X. Assume that
for any two points x,y of X, there exist neighborhoods U of 2 and V of y such that gUNV = for all g € G
satisfying = # y. Show that G\ X is a Hausdorff space.

Problem 12.
1. Show that the projective line CP' := P'(C) is a Riemann surface.

2. There is a map CP' — CP! given by [s : t] — [s? : t?]. Where is this map ramified, and what
ramification indices does it have at those points?

3. Do the same for the map CP' — CP' given by [s : t] — [s%(s — t) : t3].

Problem 13 (Cyclic isogenies). Let C/A be a complex elliptic curve. An isogeny ¢ : C/A; — C/As is
called cyclic if its kernel {z + A1 € C/A; : z € Ao} is a cyclic subgroup of C/A;.

a. Show that a cyclic subgroup C' C C/A induces a cyclic isogeny C/A — C/Cy with kernel C' for some
superlattice? Cy of A.

b. Show that any isogeny ¢ : C/A; — C/As factors as a multiplication-by-n map followed by a cyclic
isogeny.
The following four exercises are related to (complex) elliptic curves with complex multiplication, see Problem
11 of Problem Set 3.

Problem 14. Recall that an order O of a number field K is a subring of the ring of integers Ok of equal
Z-rank. Equivalently, O is a subring of Ok with its own Z-basis of algebraic integers. One has that the
index [Og : 0] < 0.

a. Show that an order in an imaginary quadratic field K = Q(v/—d) with squarefree d € Z* has the form

0= [waK]
where
Lv=d ifd=3 (mod 4)
Wi = 2
V—d ifd=1,2 (mod4)
and f =[Ok : O].

b. Show that for each integer f € Z*, the lattice Oy := [1, fwk] is an order of K with index f in Ok.

Problem 15. Let C/A be a complex elliptic curve with CM. Then its endomorphism ring O := End(C/A)
is an order in an imaginary quadratic number field K.

For an endomorphism o € End(C/A), we write (C/A)[a] for its kernel ker ¢, = a"'A/A. We call this
the a-torsion subgroup of C/A.

Let us assume the following fact: as O-modules, we have for o € End(C/A) that

(C©/N)e] o O/aO.
Then show that the degree of an endomorphism o € End(C/A) is the absolute value of its field-theoretic
norm, deg(¢) = [Ny g(a)]

2A superlattice of A is less fun than it sounds: it is just a lattice which contains A. Compare this word to sublattice.




Problem 16. Show that for two isogenous complex elliptic curves C/A; and C/Ay, C/A; has CM iff C/A,
has CM.

Problem 17.

a. Show that if a lattice A C C is homothetic to its complex conjugate A, then j(A) € R. (In fact, this is
if and only if.)

b. Show that if O is an order in an imaginary quadratic number field, then j(O) € R.

c. Conclude that for any imaginary quadratic order O, there is some complex elliptic curve C/A with
CM by O and whose j-invariant is a real number. (Hint: assume that Problem 11.c on Problem Set 3
works if we replace O with O.)

4 Advanced Problems

Problem 18. Let f : X — Y be a nonconstant holomorphic map of compact Riemann surfaces.
a. Show that f is surjective.
b. Show that f has finite fibers: that is, for all y € Y one has #f~1(y) < co.

Note that there is analogous statement in algebraic geometry: any nonconstant morphism ¢ : C; — Cs of
projective algebraic curves is surjective and has finite fibers.

Problem 19. This problem will construct a Fuchsian group which has no cusps.

a. Consider the following real 2 by 2 matrices:

0 -1 V3 0 1
B N U RS VOO
(In the definition of v, the element 1 is being used to denote the identity matrix.) Show that
O=ZSZa® LB G Ly

is a (noncommutative but unital) subring of the ring M(R) of 2 by 2 real matrices. This is a quaternion
algebra, as the elements o and 3 satisfy

a?=-1, 8% =3, aff = —pPa.

b. Consider the conjugation on O given for any element of the form
a=ag+aa+af+azap € O
by
a=ag— a1 — asf — azapf.
Show that conjugation a +— @ defines a ring automorphism of O.

c. For any a € O, show that
a+a = tr(a), ag = det(a).

Here, tr and det are the usual trace and determinant operations on matrices.

d. Let
Olz{LZGO:aL_l:].}.

Show that O; is a Fuchsian group with no cusps. (Hint: Write a as in part b., and write down the
condition that a would satisfy if it were parabolic explicitly in ag, a1, a2,a3. Then do a “descent”
procedure by looking modulo 3.)

One can use this problem to show that O1\H is a compact Riemann surface.



