AWS 2021: Modular Groups
 Problem Set 4

Lecturer: Lori Watson
Written by: Tyler Genao, Hyun Jong Kim, Zonia Menendez and Sam Mundy (Assistants)

1 Definitions and Notations

1. Recall that we have an extended upper half plane \mathcal{H}^{*}, or \mathbb{H}^{*}, via adding a projective line to \mathcal{H},

$$
\mathcal{H}^{*}:=\mathcal{H} \cup \mathbb{P}^{1}(\mathbb{Q}):=\mathcal{H} \cup \mathbb{Q} \cup\{\infty\} .
$$

Here, we can regard our elements of $\mathcal{H} \subseteq \mathcal{H}^{*}$ as column vectors $\left[\begin{array}{l}\tau \\ 1\end{array}\right]$. We regard elements of $\mathbb{Q} \cup\{\infty\}$ as equivalence classes of column vectors: a rational number $a / b \in \mathbb{Q}$ is regarded as $\left[\begin{array}{l}a \\ b\end{array}\right]$, and is equivalent to $\left[\begin{array}{l}r a \\ r b\end{array}\right]$ for all $r \in \mathbb{Q}^{\times}$. We also set $\infty:=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
2. Via matrix multiplication, we have an action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H}^{*} which extends the usual action on \mathcal{H} : for $\gamma:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$ and $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathcal{H}^{*}$, we set

$$
\gamma \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]:=\frac{a x+b y}{c x+d y} .
$$

3. For any congruence subgroup $\Gamma \subseteq \mathrm{SL}_{2}(\mathbb{Z})$, we also have that Γ acts on \mathcal{H}^{*}. The orbits of $\mathbb{P}(\mathbb{Q})$ under Γ are called the cusps of Γ.
4. Let X and Y be Riemann surfaces and $f: X \rightarrow Y$ a nonconstant holomorphic map.

Fix $x \in X$, and set $y=f(x)$. If u and t are local parameters ${ }^{1}$ at x and y, respectively, which map x and y to the origin, then in some neighborhood of x we can express f in the form

$$
t(f(z))=a_{e} u(z)^{e}+a_{\epsilon+1} u(z)^{c+1}+\cdots, \quad a_{\epsilon} \neq 0
$$

for some positive integer e. This integer is independent of the choice of u and t. It is called the ramification index of the covering map f at x. If $e>1$, then x is said to be a ramified point of f, and that y ramifies in X under f.

The following definitions concern a generalization of modular groups, called Fuchsian groups. They will be used in Problems 5, 6, 10 and 19.
5. A Fuchsian group is a discrete subgroup of $\mathrm{SL}_{2}(\mathbb{R})$. In particular, $\mathrm{SL}_{2}(\mathbb{Z})$ and all of its subgroups are Fuchsian groups.

[^0]6. A non-scalar element of α of $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is called elliptic, parabolic, or hyperbolic when it satisfies
$$
\operatorname{tr}(\alpha)^{2}<4 \operatorname{det}(\alpha), \quad \operatorname{tr}(\alpha)^{2}=4 \operatorname{det}(\alpha), \quad \text { or } \quad \operatorname{tr}(\alpha)^{2}>4 \operatorname{det}(\alpha)
$$
respectively.
7. A Fuchsian group Γ acts on $\mathcal{H} \cup \mathbb{R} \cup\{\infty\}$ via linear fractional transformations. One can show that an element $\alpha \in \Gamma$ is:

- elliptic if and only if α has fixed points z_{0} and \bar{z}_{0} for some $z_{0} \in \mathcal{H}$;
- parabolic if and only if α has a unique fixed point on $\mathbb{R} \cup\{\infty\}$;
- hyperbolic if and only if α has two distinct fixed points on $\mathbb{R} \cup\{\infty\}$.

8. Fix a Fuchsian group Γ, and let $z \in \mathcal{H} \cup \mathbb{R} \cup\{\infty\}$. We call z an elliptic point, parabolic point, or hyperbolic point of Γ if there is some elliptic/parabolic/hyperbolic element of Γ fixing z, respectively.
9. Fix a Fuchsian group Γ.

- Let P_{Γ} denote the set of parabolic points of Γ. Elements of P_{Γ} are sometimes called cusps of Γ.
- The space \mathcal{H}^{*} denotes $\mathcal{H} \cup P_{\Gamma}$.
- The space $X(\Gamma)$ denotes the quotient space $\Gamma \backslash \mathcal{H}^{*}$.

10. Fix a Fuchsian group Γ, and let $\pi: \mathcal{H}^{*} \rightarrow \Gamma \backslash \mathcal{H}^{*}=X(\Gamma)$ be the quotient map. A point $a \in X(\Gamma)$ is called an elliptic point or a cusp, respectively, when there is a lift $z \in \mathcal{H}^{*}$ of a that is either an elliptic point or a cusp for Γ. When a is neither an elliptic point nor a cusp, it is called an ordinary point.

2 Introductory Problems

Problem 1. Determine the stabilizers of i, ζ_{3} and ∞ under $\mathrm{SL}_{2}(\mathbb{Z})$, where $\zeta_{3}:=\frac{-1+\sqrt{-3}}{2}$.
Problem 2.
a. Prove that $\mathrm{SL}_{2}(\mathbb{Z})$ has exactly one cusp.
b. Show that any congruence subgroup $\Gamma \subseteq \mathrm{SL}_{2}(\mathbb{Z})$ has finitely many cusps.

Problem 3. $\mathrm{SL}_{2}(\mathbb{Z})$ acts on \mathcal{H} properly discontinuously. In other words, for any two points x, y of \mathcal{H}, there exist neighborhoods U and V of x and y, respectively, such that $\#\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma U \cap V \neq \emptyset\right\}<\infty$. Convince yourself that this is the case.

Problem 4.

1. Show that \mathbb{C} is a Riemann surface.
2. At what points is the map $\mathbb{C} \rightarrow \mathbb{C}, z \mapsto z^{2}$ ramified?

Problem 5. Let $\alpha \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ be a non-scalar element. Show that the listed definitions for α to be elliptic/parabolic/hyperbolic are indeed equivalent.
Problem 6. Let Γ be a Fuchsian group and $\alpha \in \Gamma$ a non-scalar element.

1. Show that if α is an elliptic/parabolic/hyperbolic element of Γ, then for any $\gamma \in \Gamma, \gamma \alpha \gamma^{-1}$ is also an elliptic/parabolic/hyperbolic element, respectively.
2. How do the fixed points of α and $\gamma \alpha \gamma^{-1}$ compare?

Problem 7. Show that homothetic lattices have equal j-invariants.
Problem 8. The j-function has a Laurent series expansion in terms of $q:=e^{2 \pi i \tau}$,

$$
j(\tau)=\frac{1}{q}+744+196884 q+21493760 q^{2}+864229970 q^{3}+20245856256 q^{4}+333202640600 q^{5}+\ldots
$$

By the theory of complex multiplication, one has for imaginary quadratic $\tau \in \mathcal{H}$ that $j(\tau)$ is an algebraic integer. Assuming that $j\left(\frac{1+\sqrt{-163}}{2}\right) \in \mathbb{Z}$, use this j-function expansion to show that $e^{\pi \sqrt{163}}$ is very close to an integer.

3 Intermediate Problems

Problem 9 (Diamond \& Shurman, Exercise 3.1.4). Show that for a prime $p \in \mathbb{Z}^{+}, \Gamma_{0}(p)$ has exactly two cusps.

Problem 10.

a. Show that every elliptic element of $\mathrm{SL}_{2}(\mathbb{Z})$ is of order dividing 4 or 6 .
b. What elements of $\mathrm{SL}_{2}(\mathbb{Z})$ represent the conjugacy classes of elliptic elements?
c. What are the elliptic points of $\mathrm{SL}_{2}(\mathbb{Z})$?

Problem 11 (Miyake, Lemma 1.7.1). Let G be a topological group acting continuously on X. Assume that for any two points x, y of X, there exist neighborhoods U of x and V of y such that $g U \cap V=\emptyset$ for all $g \in G$ satisfying $x \neq y$. Show that $G \backslash X$ is a Hausdorff space.

Problem 12.

1. Show that the projective line $\mathbb{C P}^{1}:=\mathbb{P}^{1}(\mathbb{C})$ is a Riemann surface.
2. There is a map $\mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ given by $[s: t] \mapsto\left[s^{2}: t^{2}\right]$. Where is this map ramified, and what ramification indices does it have at those points?
3. Do the same for the map $\mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ given by $[s: t] \mapsto\left[s^{2}(s-t): t^{3}\right]$.

Problem 13 (Cyclic isogenies). Let \mathbb{C} / Λ be a complex elliptic curve. An isogeny $\varphi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$ is called cyclic if its kernel $\left\{z+\Lambda_{1} \in \mathbb{C} / \Lambda_{1}: z \in \Lambda_{2}\right\}$ is a cyclic subgroup of \mathbb{C} / Λ_{1}.
a. Show that a cyclic subgroup $C \subseteq \mathbb{C} / \Lambda$ induces a cyclic isogeny $\mathbb{C} / \Lambda \rightarrow \mathbb{C} / C_{0}$ with kernel C for some superlattice ${ }^{2} C_{0}$ of Λ.
b. Show that any isogeny $\varphi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$ factors as a multiplication-by-n map followed by a cyclic isogeny.

The following four exercises are related to (complex) elliptic curves with complex multiplication, see Problem 11 of Problem Set 3.

Problem 14. Recall that an order \mathcal{O} of a number field K is a subring of the ring of integers \mathcal{O}_{K} of equal \mathbb{Z}-rank. Equivalently, \mathcal{O} is a subring of \mathcal{O}_{K} with its own \mathbb{Z}-basis of algebraic integers. One has that the index $\left[\mathcal{O}_{K}: \mathcal{O}\right]<\infty$.
a. Show that an order in an imaginary quadratic field $K=\mathbb{Q}(\sqrt{-d})$ with squarefree $d \in \mathbb{Z}^{+}$has the form

$$
\mathcal{O}=\left[1, f \omega_{K}\right]
$$

where

$$
\omega_{K}:= \begin{cases}\frac{1+\sqrt{-d}}{2} & \text { if } d \equiv 3 \quad(\bmod 4) \\ \sqrt{-d} & \text { if } d \equiv 1,2 \quad(\bmod 4)\end{cases}
$$

and $f=\left[\mathcal{O}_{K}: \mathcal{O}\right]$.
b. Show that for each integer $f \in \mathbb{Z}^{+}$, the lattice $\mathcal{O}_{f}:=\left[1, f \omega_{K}\right]$ is an order of K with index f in \mathcal{O}_{K}.

Problem 15. Let \mathbb{C} / Λ be a complex elliptic curve with CM . Then its endomorphism $\operatorname{ring} \mathcal{O}:=\operatorname{End}(\mathbb{C} / \Lambda)$ is an order in an imaginary quadratic number field K.

For an endomorphism $\alpha \in \operatorname{End}(\mathbb{C} / \Lambda)$, we write $(\mathbb{C} / \Lambda)[\alpha]$ for its kernel $\operatorname{ker} \phi_{\alpha}=\alpha^{-1} \Lambda / \Lambda$. We call this the α-torsion subgroup of \mathbb{C} / Λ.

Let us assume the following fact: as \mathcal{O}-modules, we have for $\alpha \in \operatorname{End}(\mathbb{C} / \Lambda)$ that

$$
(\mathbb{C} / \Lambda)[\alpha] \cong_{\mathcal{O}} \mathcal{O} / \alpha \mathcal{O}
$$

Then show that the degree of an endomorphism $\alpha \in \operatorname{End}(\mathbb{C} / \Lambda)$ is the absolute value of its field-theoretic $\underline{\text { norm, }} \operatorname{deg}\left(\phi_{\alpha}\right)=\left|\mathrm{Nm}_{K / \mathbb{Q}}(\alpha)\right|$.

[^1]Problem 16. Show that for two isogenous complex elliptic curves \mathbb{C} / Λ_{1} and $\mathbb{C} / \Lambda_{2}, \mathbb{C} / \Lambda_{1}$ has CM iff \mathbb{C} / Λ_{2} has CM.

Problem 17.
a. Show that if a lattice $\Lambda \subseteq \mathbb{C}$ is homothetic to its complex conjugate $\bar{\Lambda}$, then $j(\Lambda) \in \mathbb{R}$. (In fact, this is if and only if.)
b. Show that if \mathcal{O} is an order in an imaginary quadratic number field, then $j(\mathcal{O}) \in \mathbb{R}$.
c. Conclude that for any imaginary quadratic order \mathcal{O}, there is some complex elliptic curve \mathbb{C} / Λ with CM by \mathcal{O} and whose j-invariant is a real number. (Hint: assume that Problem 11.c on Problem Set 3 works if we replace \mathcal{O}_{K} with \mathcal{O}.)

4 Advanced Problems

Problem 18. Let $f: X \rightarrow Y$ be a nonconstant holomorphic map of compact Riemann surfaces.
a. Show that f is surjective.
b. Show that f has finite fibers: that is, for all $y \in Y$ one has $\# f^{-1}(y)<\infty$.

Note that there is analogous statement in algebraic geometry: any nonconstant morphism $\phi: C_{1} \rightarrow C_{2}$ of projective algebraic curves is surjective and has finite fibers.

Problem 19. This problem will construct a Fuchsian group which has no cusps.
a. Consider the following real 2 by 2 matrices:

$$
\alpha=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
\sqrt{3} & 0 \\
0 & -\sqrt{3}
\end{array}\right), \quad \gamma=\frac{1}{2}(1+\alpha+\beta+\alpha \beta) .
$$

(In the definition of γ, the element 1 is being used to denote the identity matrix.) Show that

$$
\mathcal{O}=\mathbb{Z} \oplus \mathbb{Z} \alpha \oplus \mathbb{Z} \beta \oplus \mathbb{Z} \gamma
$$

is a (noncommutative but unital) subring of the ring $M_{2}(\mathbb{R})$ of 2 by 2 real matrices. This is a quaternion algebra, as the elements α and β satisfy

$$
\alpha^{2}=-1, \quad \beta^{2}=3, \quad \alpha \beta=-\beta \alpha .
$$

b. Consider the conjugation on \mathcal{O} given for any element of the form

$$
a=a_{0}+a_{1} \alpha+a_{2} \beta+a_{3} \alpha \beta \in \mathcal{O}
$$

by

$$
\bar{a}=a_{0}-a_{1} \alpha-a_{2} \beta-a_{3} \alpha \beta .
$$

Show that conjugation $a \mapsto \bar{a}$ defines a ring automorphism of \mathcal{O}.
c. For any $a \in \mathcal{O}$, show that

$$
a+\bar{a}=\operatorname{tr}(a), \quad a \bar{a}=\operatorname{det}(a)
$$

Here, tr and det are the usual trace and determinant operations on matrices.
d. Let

$$
\mathcal{O}_{1}=\{a \in \mathcal{O}: a \bar{a}=1\} .
$$

Show that \mathcal{O}_{1} is a Fuchsian group with no cusps. (Hint: Write a as in part b., and write down the condition that a would satisfy if it were parabolic explicitly in $a_{0}, a_{1}, a_{2}, a_{3}$. Then do a "descent" procedure by looking modulo 3.)

One can use this problem to show that $\mathcal{O}_{1} \backslash \mathcal{H}$ is a compact Riemann surface.

[^0]: ${ }^{1}$ In particular, for some open subsets $U, U^{\prime} \subset Y$, one has that $u: U \rightarrow \mathbb{C}$ and $t: U^{\prime} \rightarrow \mathbb{C}$ are maps which are homeomorphic onto their images, and the transition maps $u \circ t^{-1}: t\left(U \cap U^{\prime}\right) \rightarrow u\left(U \cap U^{\prime}\right)$ and $t \circ u^{-1}: u\left(U \cap U^{\prime}\right) \rightarrow t\left(U \cap U^{\prime}\right)$ are both holomorphic maps.

[^1]: ${ }^{2}$ A superlattice of Λ is less fun than it sounds: it is just a lattice which contains Λ. Compare this word to sublattice.

