AWS 2021: Modular Groups
 Problem Set 5

Lecturer: Lori Watson
Written by: Tyler Genao, Hyun Jong Kim, Zonia Menendez and Sam Mundy (Assistants)

Last updated: February 23, 2021

1 Definitions and Notations

1. Given two compact Riemann surfaces X and Y, a nonconstant holomorphic map

$$
f: X \rightarrow Y
$$

has a well-defined degree $\operatorname{deg}(f)$. One has for all but finitely many $y \in Y$ that $\# f^{-1}(y)=\operatorname{deg}(f)$.
2. One has a relation between the degree of a nonconstant holomorphic map and its ramification indices,

$$
\sum_{x \in f^{-1}(y)} e_{x}=\operatorname{deg}(f)
$$

It follows that for $y \in Y$, one has $\# f^{-1}(y)=\operatorname{deg}(f)$ iff each $x \in f^{-1}(y)$ is unramified, i.e., $e_{x}=1$.
3. Let us write $X(N):=X(\Gamma(N)), X_{1}(N):=X\left(\Gamma_{1}(N)\right)$ and $X_{0}(N):=X\left(\Gamma_{0}(N)\right)$.
4. From here on out, we will write $\Gamma(1):=\mathrm{SL}_{2}(\mathbb{Z})$.
5. Given two congruence subgroups $\Gamma_{1} \subseteq \Gamma_{2} \subseteq \Gamma(1)$, one has a natural map of modular curves,

$$
\pi: X\left(\Gamma_{1}\right) \rightarrow X\left(\Gamma_{2}\right)
$$

via

$$
\Gamma_{1} \tau \mapsto \Gamma_{2} \tau
$$

This is a nonconstant holomorphic map between compact Riemann surfaces.
6. For a congruence subgroup $\Gamma \subseteq \Gamma(1)$, a special case of the above is the natural map

$$
X(\Gamma) \rightarrow X(1)
$$

via

$$
\Gamma \tau \mapsto \Gamma(1) \tau
$$

We sometimes call this map the j-line map, and $X(1)$ the j-line.
7. For congruence subgroups $\Gamma_{1} \subseteq \Gamma_{2}$, let $\pi: X\left(\Gamma_{1}\right) \rightarrow X\left(\Gamma_{2}\right)$ be the natural projection map, $\Gamma_{1} \tau \mapsto \Gamma_{2} \tau$. Then one can compute ramification indices of points over π as follows. If $x:=\Gamma_{1} \tau$ is a point on $X\left(\Gamma_{1}\right)$, then its ramification index is

$$
e_{x}=\left[\{ \pm I\} \operatorname{Stab}_{\Gamma_{2}}(\tau):\{ \pm I\} \operatorname{Stab}_{\Gamma_{1}}(\tau)\right]
$$

For a proof of this fact, see Section 3.1 of Diamond \& Shurman.
8. In the context of congruence subgroups, a point $\tau \in \mathcal{H}$ is called an elliptic point for Γ if its stabilizer is nontrivial, i.e., $\operatorname{Stab}_{\Gamma}(\tau) \supsetneq\{ \pm I\}$. Its corresponding point $\Gamma \tau \in X(\Gamma)$ is also called an elliptic point. Compare this to the definition of elliptic points for Fuchsian subgroups in the previous problem set.
9. Given an elliptic point $\Gamma \tau \in X(\Gamma)$, its period is the index

$$
h_{\Gamma \tau}:=\left[\{ \pm I\} \operatorname{Stab}_{\Gamma}(\tau):\{ \pm I\}\right]= \begin{cases}\# \operatorname{Stab}_{\Gamma}(\tau) / 2 & \text { if }-I \in \Gamma \\ \# \operatorname{Stab}_{\Gamma}(\tau) & \text { if }-I \notin \Gamma\end{cases}
$$

The following definitions concern divisors on compact Riemann surfaces, see Problems 8, 15, 16, 17 and 19. Throughout, we let X denote a compact Riemann surface.
10. A divisor on X is a formal (finite) $\operatorname{sum} D=\sum n_{i} P_{i}$ where $n_{i} \in \mathbb{Z}$ and $P_{i} \in X$. In particular, the group of divisors $\operatorname{Div}(X)$ is an abelian group generated by the points of X.
11. A divisor D is effective if all its coefficients are non-negative. We write $D \geq 0$ for an effective divisor.
12. The degree of a divisor D is the sum of its coefficients, i.e.,

$$
\operatorname{deg}(D):=\sum n_{i}
$$

13. A meromorphic function on X is a holomorphic function f on the complement $X \backslash \Xi$ of some discrete subset Ξ of U that has at worst a pole at each point of Ξ.
In terms of coordinate neighborhoods: if (U, φ) is a coordinate neighborhood of X, then the map $f \circ \varphi^{-1}: \varphi(U) \rightarrow \mathbb{C}$ is a meromorphic function on $\varphi(U)^{1}$. In particular, around a point $a \in \varphi(U)$, there is some non-negative integer n such that $(z-a)^{n} \cdot\left(f \circ \varphi^{-1}\right)(z)$ is holomorphic at $z=a$.
14. For a nonzero meromorphic function f on X, for each $P \in X$ let us define the order of f at P. We write it as $\operatorname{ord}_{P}(f)=m,-m$, or 0 , according to whether f has a zero of order m at P, a pole of order m at P, or neither a pole nor a zero at P. The divisor of f is then

$$
\operatorname{div}(f):=\sum_{P \in X} \operatorname{ord}_{P}(f) \cdot P
$$

(This is a finite sum since the X is compact and the zeros and poles of f form discrete sets.) Such a divisor $\operatorname{div}(f)$ is called a principal divisor of X. One can show that a principal divisor has degree 0 .
15. Two divisors D_{1}, D_{2} on X are called linearly equivalent if their difference $D_{1}-D_{2}$ is principal, i.e., $D_{1}-D_{2}=\operatorname{div}(f)$ for some nonzero meromorphic function f on X.
16. For a divisor D, we can define its Riemann Roch space as

$$
L(D):=\{\text { nonzero meromorphic } f \text { on } X: \operatorname{div}(f)+D \geq 0\} \cup\{0\}
$$

This is a \mathbb{C}-vector space; denote its dimension by $l(D)$.

2 Introductory Problems

A note: to prove genus formulas for specific modular curves like $X_{0}(\ell), X_{1}(\ell)$ and $X(\ell)$, follow Problems $1 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 18$; you should also try Problem 3 .

Problem 1.

a. Show that for congruence subgroups $\Gamma_{1} \subseteq \Gamma_{2}$, the cusps of $X\left(\Gamma_{1}\right)$ are precisely the preimages of the cusps of $X\left(\Gamma_{2}\right)$ under the natural projection map.

[^0]b. Show that $X(\Gamma)$ has finitely many cusps for any congruence subgroup Γ.

Problem 2. Show that for any congruence subgroup $\Gamma \subseteq \Gamma(1), X(\Gamma)$ has finitely many elliptic points.
Problem 3. Recall that a compact Riemann surface with genus $g=1$ is a complex elliptic curve, i.e., a complex torus.

Using the genus formulas in Problem 18, create a list of all prime numbers $\ell \geq 5$ for which $X(\ell)$ is a complex elliptic curve. Do the same for $X_{1}(\ell)$ and $X_{0}(\ell)$.

Problem 4. Show that each noncuspidal point $\Gamma(1) \tau \in X(1)$ has a well-defined j-invariant $j(\Gamma \tau):=$ $j([1, \tau])$.

Problem 5. Let $\Gamma \subseteq \Gamma(1)$ be a congruence subgroup.
a. Show that the natural map $X(\Gamma) \rightarrow X(1)$ can only ramify over the points $\Gamma(1) i, \Gamma(1) \zeta_{3}$ and $\Gamma(1) \infty$. (Hint: see Definition 7.)
b. Determine explicitly which noncuspidal points are ramified under $X_{1}(N) \rightarrow X(1)$. Do the same analysis with the $\operatorname{map} X_{0}(N) \rightarrow X(1)$.

Problem 6. What is the moduli space interpretation of the natural map $X_{1}(N) \rightarrow X_{0}(N)$ on the noncuspidal points? What about the map $X_{0}(N) \rightarrow X(1)$?

Problem 7. Let $\Gamma \subset \Gamma(1)$ be a congruence subgroup. By Problem 5, we know that $\Gamma(1) i$ and $\Gamma(1) \zeta_{3}$ are the only noncuspidal points which can ramify under the map $X(\Gamma) \rightarrow X(1)$. Similar to Problem 6 , we can interpret this map in terms of elliptic curves. How is this ramification related to elliptic curves corresponding to the points $\Gamma(1) i$ and $\Gamma(1) \zeta_{3}$ in $X(1)$?

Problem 8. Let X be a compact Riemann surface.
a. Given nonzero meromorphic functions f and g on X, show that $\operatorname{div}(f \cdot g)=\operatorname{div}(f)+\operatorname{div}(g)$. Also show that $\operatorname{div}\left(f^{-1}\right)=-\operatorname{div}(f)$.
b. A constant c on X can be interpreted as a meromorphic function on X. Show that $\operatorname{div}(c)=0$.
c. Say that f is a nonzero meromorphic function such that $\operatorname{div}(f)$ is effective. Show that f is holomorphic.

3 Intermediate Problems

Problem 9 (Diamond \& Shurman, Exercise 2.3.7). Show there are no elliptic points for the following congruence subgroups.
a. $\Gamma(N)$ for $N>1$;
b. $\Gamma_{1}(N)$ for $N>3$;
c. $\Gamma_{0}(N)$ for any N divisible by some prime congruent to $-1(\bmod 12)$.

Problem 10 (Degrees of maps between modular curves). Show that for $\Gamma_{1} \subseteq \Gamma_{2}$, the projection map $\pi: X\left(\Gamma_{1}\right) \rightarrow X\left(\Gamma_{2}\right)$ satisfies

$$
\operatorname{deg}(\pi)= \begin{cases}{\left[\Gamma_{2}: \Gamma_{1}\right] / 2} & \text { if }-I \in \Gamma_{2} \backslash \Gamma_{1} \\ {\left[\Gamma_{2}: \Gamma_{1}\right]} & \text { else }\end{cases}
$$

(Hint: Choose a set of coset representatives for $\{ \pm I\} \Gamma_{1}$ in $\{ \pm I\} \Gamma_{2}$. Then for infinitely many non-elliptic points $\Gamma_{2} \tau \in X\left(\Gamma_{2}\right)$, determine the size $\# \pi^{-1}\left(\Gamma_{2} \tau\right)$.)

Problem 11. Following Problem 10, we can determine the degrees of the natural maps between various modular curves.

Assume that $N \geq 3$.
a. Show that

$$
\operatorname{deg}\left(X_{0}(N) \rightarrow X(1)\right)=\psi(N)
$$

where $\psi(N):=N \prod_{p \mid N}(1+1 / p)$ is the Dedekind psi function.
b. Show that

$$
\operatorname{deg}\left(X_{1}(N) \rightarrow X(1)\right)=\frac{\phi(N) \psi(N)}{2}
$$

where $\phi(N):=N \prod_{p \mid N}(1-1 / p)$ is Euler's totient function.
c. Show that

$$
\operatorname{deg}(X(N)) \rightarrow X(1))=\frac{N \phi(N) \psi(N)}{2}
$$

d. Show that

$$
\operatorname{deg}\left(X_{1}(N) \rightarrow X_{0}(N)\right)=\frac{\phi(N)}{2}
$$

(Hint: refer to Problem Set 2 for each relevant index.)
Problem 12 (Diamond \& Shurman, Exercise 3.1.5). This exercise will show that for an odd prime $\ell \in \mathbb{Z}^{+}$, $X_{1}(\ell)$ has exactly $\ell-1$ cusps.
a. Show that any element $\gamma \in \operatorname{Stab}_{\Gamma(1)}(s)$ has trace ± 2.
b. Show that for any cusp $s \in \mathbb{P}^{1}(\mathbb{Q})$, one has $\operatorname{Stab}_{\Gamma_{0}(\ell)}(s)=\operatorname{Stab}_{\{ \pm I\} \Gamma_{1}(\ell)}(s)$.
c. Conclude that the natural map $X_{0}(\ell) \rightarrow X_{1}(\ell)$ is unramified at the cusps.
d. Use Problems 1 and 11 and Definitions 2 and 7 to conclude that $X_{1}(\ell)$ has exactly $\ell-1$ cusps for odd primes $\ell \in \mathbb{Z}^{+}$.
Problem 13 (Diamond \& Shurman, Exercise 3.1.4). Let $\ell \in \mathbb{Z}^{+}$be prime.

1. Show that the number of elliptic points of period 2 in $X_{0}(\ell)$ is the number of solutions to $x^{2}+1$ mod ℓ, which is 2 if $\ell \equiv 1(\bmod 4), 0$ if $\ell \equiv 3(\bmod 4)$ and 1 if $\ell=2$.
2. Show that the number of elliptic points of period 3 in $X_{0}(\ell)$ is the number of solutions to $x^{2}-x+1$ $\bmod \ell$, which is 2 if $\ell \equiv 1(\bmod 3), 0$ if $\ell \equiv 2(\bmod 3)$ and 1 if $\ell=3$.
(Hint: Use the coset decomposition

$$
\Gamma(1)=\Gamma_{0}(\ell) \alpha_{\infty} \cup \bigcup_{j=0}^{\ell-1} \Gamma_{0}(\ell) \alpha_{j}
$$

where $\alpha_{j}:=\left[\begin{array}{ll}1 & 0 \\ j & 1\end{array}\right]$ and $\alpha_{\infty}:=\left[\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right]$ to deduce that the elliptic points of Γ are contained in the subset $\left\{\Gamma \alpha_{j} \cdot i, \Gamma \alpha_{j} \cdot \zeta_{3}: 0 \leq j \leq \ell-1\right\} \cup\left\{\Gamma \alpha_{\infty} \cdot i, \Gamma \alpha_{\infty} \cdot \zeta_{3}\right\}$ of $X(\Gamma)$.)

Problem 14 (Diamond \& Shurman, Exercise 1.5.4). For nonzero integer $N \in \mathbb{Z}^{+}$, consider the matrix $\omega_{N}:=\left[\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right] \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$.
a. Show that ω_{N} normalizes $\Gamma_{0}(N)$, and thus gives an automorphism $\Gamma_{0} \tau \mapsto \Gamma_{0} \omega_{N} \cdot \tau$ of the modular curve $X_{0}(N)$.
b. Show that this automorphism is an involution (i.e., has order 2).
c. Regarding $X_{0}(N)$ as a moduli space, describe the corresponding automorphism on the noncuspidal points of $X_{0}(N)$.

Problem 15. Let X be a compact Riemann surface. Let D be a divisor with negative degree. Show that $l(D)=0$. (Hint: A principal divisor has degree 0 .)

Problem 16. Let X be a compact Riemann surface.
a. Show that if f is a nonzero meromorphic function on X with $\operatorname{div}(f)=0$, then f is constant.
b. Show that if f, g are nonzero meromorphic functions on X with $\operatorname{div}(f)=\operatorname{div}(g)$, then f is a constant multiple of g.
c. Show that $l(0)=1$.

Problem 17 (Divisors and the Riemann-Roch theorem). The Riemann-Roch theorem for compact Riemann surfaces, ${ }^{2}$ which we do not prove, states the following: Let X be a compact Riemann surface with genus g. Then there is a divisor K, called the canonical divisor of $X,{ }^{3}$ such that for every divisor D of X one has

$$
l(D)-l(K-D)=\operatorname{deg}(D)+1-g
$$

a. Show that $\operatorname{deg}(K)=2 g-2$ and $l(K)=g$.
b. If $\operatorname{deg}(D)>2 g-2$, then show that Riemann-Roch simplifies: $l(D)=\operatorname{deg}(D)+1-g$.

4 Advanced Problems

Problem 18 (The genus of a modular curve). Given a congruence subgroup $\Gamma \subseteq \Gamma(1)$, one has the genus formula (Theorem 3.1.1 of Diamond \& Shurman)

$$
g(X(\Gamma))=1+\frac{\operatorname{deg}(X(\Gamma) \rightarrow X(1))}{12}-\frac{\epsilon_{2}}{4}-\frac{\epsilon_{3}}{3}-\frac{\epsilon_{\infty}}{2} .
$$

Here we have

1. $\epsilon_{2}:=$ the number of elliptic points on $X(\Gamma)$ of period 2 ;
2. $\epsilon_{3}:=$ the number of elliptic points on $X(\Gamma)$ of period 3 ;
3. $\epsilon_{\infty}:=$ the number of cusps on $X(\Gamma)$.

Let $\ell \geq 5$ be prime. Prove the following genera formulas:
a. $g\left(X_{0}(\ell)\right)= \begin{cases}\left\lfloor\frac{\ell+1}{12}\right\rfloor-1 & \text { if } \ell \equiv 1(\bmod 12), \\ \left\lfloor\frac{\ell+1}{12}\right\rfloor & \text { otherwise. }\end{cases}$
b. $g\left(X_{1}(\ell)\right)=1+\frac{(\ell-1)(\ell-11)}{24}$.
c. $g(X(\ell))=1+\frac{\left(\ell^{2}-1\right)(\ell-6)}{24}$.
(For part c., let us take for granted that the number of cusps for $\Gamma(N)$ is $\epsilon_{\infty}(\Gamma(N))=(1 / 2) N^{2} \prod_{p \mid N}\left(1-1 / p^{2}\right)$ when $N>2$.)

Problem 19 (The Riemann-Roch theorem and Weierstrass equations of elliptic curves). Let E / \mathbb{C} be an elliptic curve, namely a genus 1 smooth curve (or compact Riemann surface) with a distinguished point O. In particular, E has divisors of the form $n(O)$. We will show that there is a cubic equation that we can associate to $E .{ }^{4}$
a. Show that $l(n(O))=n$ for all sufficiently large n (Hint: see Problem 17). In fact, for which n does this hold?

[^1]b. Conclude that $L((O))$ only consists of the constant functions.
c. Conclude that $L(2(O))$ has a function x not in $L((O))$.
d. Conclude that $L(3(O))$ has a function y not in $L(2(O))$.
e. Conclude that $1, x, y, x^{2}, x y, y^{2}, x^{3}$ are all in $L(6(O))$.
f. However, $l(6(O))=6$. Therefore, $1, x, y, x^{2}, x y, y^{2}, x^{3}$ are linearly dependent over \mathbb{C}.
g. Conclude that we have a relation
$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$
with each $a_{i} \in \mathbb{C} .{ }^{5}$

[^2]
[^0]: ${ }^{1} \varphi(U)$ is an open subset of \mathbb{C}.

[^1]: ${ }^{2}$ This has an algebraic geometry equivalent as well.
 ${ }^{3}$ The canonical divisor is unique up to linear equivalence.
 ${ }^{4}$ This exercise also extends to elliptic curves over fields other than \mathbb{C}.

[^2]: ${ }^{5}$ We have not actually shown that our elliptic curve is isomorphic to the curve defined by this cubic equation, but this is a start.

