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1 Definitions and Notations

1. Given two compact Riemann surfaces X and Y , a nonconstant holomorphic map

f : X → Y

has a well-defined degree deg(f). One has for all but finitely many y ∈ Y that #f−1(y) = deg(f).

2. One has a relation between the degree of a nonconstant holomorphic map and its ramification indices,∑
x∈f−1(y)

ex = deg(f).

It follows that for y ∈ Y , one has #f−1(y) = deg(f) iff each x ∈ f−1(y) is unramified, i.e., ex = 1.

3. Let us write X(N) := X(Γ(N)), X1(N) := X(Γ1(N)) and X0(N) := X(Γ0(N)).

4. From here on out, we will write Γ(1) := SL2(Z).

5. Given two congruence subgroups Γ1 ⊆ Γ2 ⊆ Γ(1), one has a natural map of modular curves,

π : X(Γ1)→ X(Γ2)

via
Γ1τ 7→ Γ2τ.

This is a nonconstant holomorphic map between compact Riemann surfaces.

6. For a congruence subgroup Γ ⊆ Γ(1), a special case of the above is the natural map

X(Γ)→ X(1)

via
Γτ 7→ Γ(1)τ.

We sometimes call this map the j-line map, and X(1) the j-line.

7. For congruence subgroups Γ1 ⊆ Γ2, let π : X(Γ1)→ X(Γ2) be the natural projection map, Γ1τ 7→ Γ2τ .
Then one can compute ramification indices of points over π as follows. If x := Γ1τ is a point on X(Γ1),
then its ramification index is

ex = [{±I}StabΓ2
(τ) : {±I}StabΓ1

(τ)].

For a proof of this fact, see Section 3.1 of Diamond & Shurman.
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8. In the context of congruence subgroups, a point τ ∈ H is called an elliptic point for Γ if its stabilizer
is nontrivial, i.e., StabΓ(τ) ) {±I}. Its corresponding point Γτ ∈ X(Γ) is also called an elliptic point.
Compare this to the definition of elliptic points for Fuchsian subgroups in the previous problem set.

9. Given an elliptic point Γτ ∈ X(Γ), its period is the index

hΓτ := [{±I}StabΓ(τ) : {±I}] =

{
#StabΓ(τ)/2 if − I ∈ Γ

#StabΓ(τ) if − I 6∈ Γ
.

The following definitions concern divisors on compact Riemann surfaces, see Problems 8, 15, 16, 17 and 19.
Throughout, we let X denote a compact Riemann surface.

10. A divisor on X is a formal (finite) sum D =
∑
niPi where ni ∈ Z and Pi ∈ X. In particular, the

group of divisors Div(X) is an abelian group generated by the points of X.

11. A divisor D is effective if all its coefficients are non-negative. We write D ≥ 0 for an effective divisor.

12. The degree of a divisor D is the sum of its coefficients, i.e.,

deg(D) :=
∑

ni.

13. A meromorphic function on X is a holomorphic function f on the complement X \Ξ of some discrete
subset Ξ of U that has at worst a pole at each point of Ξ.

In terms of coordinate neighborhoods: if (U,ϕ) is a coordinate neighborhood of X, then the map
f ◦ ϕ−1 : ϕ(U) → C is a meromorphic function on ϕ(U)1. In particular, around a point a ∈ ϕ(U),
there is some non-negative integer n such that (z − a)n · (f ◦ ϕ−1)(z) is holomorphic at z = a.

14. For a nonzero meromorphic function f on X, for each P ∈ X let us define the order of f at P . We
write it as ordP (f) = m,−m, or 0, according to whether f has a zero of order m at P , a pole of order
m at P , or neither a pole nor a zero at P . The divisor of f is then

div(f) :=
∑
P∈X

ordP (f) · P

(This is a finite sum since the X is compact and the zeros and poles of f form discrete sets.) Such a
divisor div(f) is called a principal divisor of X. One can show that a principal divisor has degree 0.

15. Two divisors D1, D2 on X are called linearly equivalent if their difference D1 − D2 is principal, i.e.,
D1 −D2 = div(f) for some nonzero meromorphic function f on X.

16. For a divisor D, we can define its Riemann Roch space as

L(D) := {nonzero meromorphic f on X : div(f) +D ≥ 0} ∪ {0}.

This is a C-vector space; denote its dimension by l(D).

2 Introductory Problems

A note: to prove genus formulas for specific modular curves like X0(`), X1(`) and X(`), follow Problems
1→ 9→ 10→ 11→ 12→ 13→ 18; you should also try Problem 3.

Problem 1.

a. Show that for congruence subgroups Γ1 ⊆ Γ2, the cusps of X(Γ1) are precisely the preimages of the
cusps of X(Γ2) under the natural projection map.

1ϕ(U) is an open subset of C.
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b. Show that X(Γ) has finitely many cusps for any congruence subgroup Γ.

Problem 2. Show that for any congruence subgroup Γ ⊆ Γ(1), X(Γ) has finitely many elliptic points.

Problem 3. Recall that a compact Riemann surface with genus g = 1 is a complex elliptic curve, i.e., a
complex torus.

Using the genus formulas in Problem 18, create a list of all prime numbers ` ≥ 5 for which X(`) is a
complex elliptic curve. Do the same for X1(`) and X0(`).

Problem 4. Show that each noncuspidal point Γ(1)τ ∈ X(1) has a well-defined j-invariant j(Γτ) :=
j([1, τ ]).

Problem 5. Let Γ ⊆ Γ(1) be a congruence subgroup.

a. Show that the natural map X(Γ) → X(1) can only ramify over the points Γ(1)i,Γ(1)ζ3 and Γ(1)∞.
(Hint: see Definition 7.)

b. Determine explicitly which noncuspidal points are ramified underX1(N)→ X(1). Do the same analysis
with the map X0(N)→ X(1).

Problem 6. What is the moduli space interpretation of the natural map X1(N)→ X0(N) on the noncus-
pidal points? What about the map X0(N)→ X(1)?

Problem 7. Let Γ ⊂ Γ(1) be a congruence subgroup. By Problem 5, we know that Γ(1)i and Γ(1)ζ3 are
the only noncuspidal points which can ramify under the map X(Γ) → X(1). Similar to Problem 6, we can
interpret this map in terms of elliptic curves. How is this ramification related to elliptic curves corresponding
to the points Γ(1)i and Γ(1)ζ3 in X(1)?

Problem 8. Let X be a compact Riemann surface.

a. Given nonzero meromorphic functions f and g on X, show that div(f ·g) = div(f)+div(g). Also show
that div(f−1) = −div(f).

b. A constant c on X can be interpreted as a meromorphic function on X. Show that div(c) = 0.

c. Say that f is a nonzero meromorphic function such that div(f) is effective. Show that f is holomorphic.

3 Intermediate Problems

Problem 9 (Diamond & Shurman, Exercise 2.3.7). Show there are no elliptic points for the following
congruence subgroups.

a. Γ(N) for N > 1;

b. Γ1(N) for N > 3;

c. Γ0(N) for any N divisible by some prime congruent to −1 (mod 12).

Problem 10 (Degrees of maps between modular curves). Show that for Γ1 ⊆ Γ2, the projection map
π : X(Γ1)→ X(Γ2) satisfies

deg(π) =

{
[Γ2 : Γ1]/2 if − I ∈ Γ2 r Γ1

[Γ2 : Γ1] else
.

(Hint: Choose a set of coset representatives for {±I}Γ1 in {±I}Γ2. Then for infinitely many non-elliptic
points Γ2τ ∈ X(Γ2), determine the size #π−1(Γ2τ).)

Problem 11. Following Problem 10, we can determine the degrees of the natural maps between various
modular curves.

Assume that N ≥ 3.
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a. Show that
deg(X0(N)→ X(1)) = ψ(N)

where ψ(N) := N
∏
p|N (1 + 1/p) is the Dedekind psi function.

b. Show that

deg(X1(N)→ X(1)) =
φ(N)ψ(N)

2

where φ(N) := N
∏
p|N (1− 1/p) is Euler’s totient function.

c. Show that

deg(X(N))→ X(1)) =
Nφ(N)ψ(N)

2
.

d. Show that

deg(X1(N)→ X0(N)) =
φ(N)

2
.

(Hint: refer to Problem Set 2 for each relevant index.)

Problem 12 (Diamond & Shurman, Exercise 3.1.5). This exercise will show that for an odd prime ` ∈ Z+,
X1(`) has exactly `− 1 cusps.

a. Show that any element γ ∈ StabΓ(1)(s) has trace ±2.

b. Show that for any cusp s ∈ P1(Q), one has StabΓ0(`)(s) = Stab{±I}Γ1(`)(s).

c. Conclude that the natural map X0(`)→ X1(`) is unramified at the cusps.

d. Use Problems 1 and 11 and Definitions 2 and 7 to conclude that X1(`) has exactly `− 1 cusps for odd
primes ` ∈ Z+.

Problem 13 (Diamond & Shurman, Exercise 3.1.4). Let ` ∈ Z+ be prime.

1. Show that the number of elliptic points of period 2 in X0(`) is the number of solutions to x2 + 1 mod
`, which is 2 if ` ≡ 1 (mod 4), 0 if ` ≡ 3 (mod 4) and 1 if ` = 2.

2. Show that the number of elliptic points of period 3 in X0(`) is the number of solutions to x2 − x + 1
mod `, which is 2 if ` ≡ 1 (mod 3), 0 if ` ≡ 2 (mod 3) and 1 if ` = 3.

(Hint: Use the coset decomposition

Γ(1) = Γ0(`)α∞ ∪
`−1⋃
j=0

Γ0(`)αj

where αj :=

[
1 0
j 1

]
and α∞ :=

[
1 −1
1 0

]
to deduce that the elliptic points of Γ are contained in the subset

{Γαj · i,Γαj · ζ3 : 0 ≤ j ≤ `− 1} ∪ {Γα∞ · i,Γα∞ · ζ3} of X(Γ).)

Problem 14 (Diamond & Shurman, Exercise 1.5.4). For nonzero integer N ∈ Z+, consider the matrix

ωN :=

[
0 −1
N 0

]
∈ GL+

2 (Q).

a. Show that ωN normalizes Γ0(N), and thus gives an automorphism Γ0τ 7→ Γ0ωN · τ of the modular
curve X0(N).

b. Show that this automorphism is an involution (i.e., has order 2).

c. Regarding X0(N) as a moduli space, describe the corresponding automorphism on the noncuspidal
points of X0(N).
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Problem 15. Let X be a compact Riemann surface. Let D be a divisor with negative degree. Show that
l(D) = 0. (Hint: A principal divisor has degree 0.)

Problem 16. Let X be a compact Riemann surface.

a. Show that if f is a nonzero meromorphic function on X with div(f) = 0, then f is constant.

b. Show that if f, g are nonzero meromorphic functions on X with div(f) = div(g), then f is a constant
multiple of g.

c. Show that l(0) = 1.

Problem 17 (Divisors and the Riemann-Roch theorem). The Riemann-Roch theorem for compact Riemann
surfaces,2 which we do not prove, states the following: Let X be a compact Riemann surface with genus g.
Then there is a divisor K, called the canonical divisor of X,3 such that for every divisor D of X one has

l(D)− l(K −D) = deg(D) + 1− g.

a. Show that deg(K) = 2g − 2 and l(K) = g.

b. If deg(D) > 2g − 2, then show that Riemann-Roch simplifies: l(D) = deg(D) + 1− g.

4 Advanced Problems

Problem 18 (The genus of a modular curve). Given a congruence subgroup Γ ⊆ Γ(1), one has the genus
formula (Theorem 3.1.1 of Diamond & Shurman)

g(X(Γ)) = 1 +
deg(X(Γ)→ X(1))

12
− ε2

4
− ε3

3
− ε∞

2
.

Here we have

1. ε2 := the number of elliptic points on X(Γ) of period 2;

2. ε3 := the number of elliptic points on X(Γ) of period 3;

3. ε∞ := the number of cusps on X(Γ).

Let ` ≥ 5 be prime. Prove the following genera formulas:

a. g(X0(`)) =

{
b `+1

12 c − 1 if ` ≡ 1 (mod 12),

b `+1
12 c otherwise.

b. g(X1(`)) = 1 + (`−1)(`−11)
24 .

c. g(X(`)) = 1 + (`2−1)(`−6)
24 .

(For part c., let us take for granted that the number of cusps for Γ(N) is ε∞(Γ(N)) = (1/2)N2
∏
p|N (1−1/p2)

when N > 2.)

Problem 19 (The Riemann-Roch theorem and Weierstrass equations of elliptic curves). Let E/C be an
elliptic curve, namely a genus 1 smooth curve (or compact Riemann surface) with a distinguished point O.
In particular, E has divisors of the form n(O). We will show that there is a cubic equation that we can
associate to E.4

a. Show that l(n(O)) = n for all sufficiently large n (Hint : see Problem 17). In fact, for which n does
this hold?

2This has an algebraic geometry equivalent as well.
3The canonical divisor is unique up to linear equivalence.
4This exercise also extends to elliptic curves over fields other than C.
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b. Conclude that L((O)) only consists of the constant functions.

c. Conclude that L(2(O)) has a function x not in L((O)).

d. Conclude that L(3(O)) has a function y not in L(2(O)).

e. Conclude that 1, x, y, x2, xy, y2, x3 are all in L(6(O)).

f. However, l(6(O)) = 6. Therefore, 1, x, y, x2, xy, y2, x3 are linearly dependent over C.

g. Conclude that we have a relation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with each ai ∈ C.5

5We have not actually shown that our elliptic curve is isomorphic to the curve defined by this cubic equation, but this is a
start.
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