
INTRODUCTION TO MODEL THEORY WITH APPLICATIONS

RONNIE NAGLOO

1. FIRST-ORDER LOGIC - AN INTRODUCTION

The first lecture is an introduction to the basics of first order logic geared to model
theory. We explain how in mathematical logic, statements about mathematical ob-
jects and structures can be studied as mathematical objects in their own right. We
will formalize notions such as a structure, a property, an axiom (or statement) and
satisfaction. I have used David Marker’s book “Model Theory: An Introduction”
(Springer 2002) and Rahim Moosa’s Lecture notes “Set Theory and Model Theory”
as a source for ideas about exposition as well as some examples. I am grateful to
both of these authors.

1.1. Languages and Structures. Let us start by looking at two mathematical struc-
tures that you have likely come across in your math journey.

Example 1.1. t

(1) A group G = (G, ∗, e) consists of
• a set G,
• a binary operation ∗ : G× G → G,
• a distinguished element e ∈ G,
• the group axioms.

(2) An ordered field F = (F,+,−,×,<, 0, 1) consists of
• a set F,
• binary operations +,−,× : F× F → F,
• a binary relation < on F,
• distinguished elements 0, 1 ∈ F.
• the axioms for an ordered field.

Abstracting the common features of the above two examples (while not worrying
about the axioms for a moment) brings us to the notion of a structure:

Definition 1.2. A structure M consists of a nonempty underlying set M called its
universe, together with

• a set C of distinguished elements of M, called the constants,
• a set F = { f : Mn f → M} of distinguished functions on M called the basic

functions, and
• a set R = {R ⊆ MnR} of distinguished subsets called the basic relations
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Each of the nonzero natural numbers n f (resp. nR) above, is called the arity of the
corresponding function (resp. relation). As we have seen, it could be that one of the
set C, F and/or R are empty. The set C∪ F ∪R is called the signature of M.

Remark 1.3. An underlying set could be the universe of many structures. For exam-
ple (R,+, 0) has the structure of a group and (R+,−,×,<, 0, 1) that of an ordered
field.

Going back to the example of groups above, it is not hard to see that groups in gen-
eral will have different signatures. For example, this is clearly the case for (Z,+, 0)
and (R \ {0},×, 1). Nevertheless in this example it is understood that + and × are
used to represent the group operation (which all groups must have). The follow-
ing definition will help capture the idea that the (any) two groups have a common
language.

Definition 1.4. A Language L consists of the following:
• a set LC of constant symbols,
• a set LF of function symbols, together with a nonzero natural numbers n f for

each f ∈ LF.
• a set LR of relation symbols, together with a nonzero natural numbers nR for

each R ∈ LR.
As above, the numbers n f and nR are called the arities of the corresponding symbols.

Given a language L, an L-structure is a structure M together with bijective maps
ρS
M : LS → S for S = C,F,R. The maps ρFM and ρRM are also assumed to preserve the

arities.

Notation 1.5. We write cM, fM and RM instead of ρCM(c), ρFM( f ) and ρRM(R) respec-
tively.

Hence
• for each c ∈ LC, we have a constant cM ∈M,
• for each f ∈ LF, we have a basic function fM : Mn f → M, and
• for each R ∈ LR, we have a basic relation R ⊂ MnR .

We call cM, fM and RM the interpretations in M of the corresponding symbols.

Example 1.6. t
(1) L∅ = ∅ the language of pure sets.
(2) Lg = {∗, e} the language of groups.
(3) Lr = {+,−,×, 0, 1} the language of rings.
(4) Lor = Lr ∪ {<} the language of ordered rings.

In each cases, you likely have your favourite structure(s).

Important. t
(1) Even though we call Lg = {∗, e} the language of groups, one should note

that an Lg-structure need not be a group. For example (N,+, 0) is an Lg-
structure although it is not a group. The same applies to the other examples
above except of course for the first.
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(2) To ease notation, often we will use the same letter for the symbol and its
interpretation. For example, in Lr = {+,−,×, 0, 1}, we will write R =
(R,+,−,×, 0, 1) instead of R = (R,+R,−R,×R, 0R, 1R).

Let us define what it means for a map between two structures to be “structure
preserving”:

Definition 1.7. Let L be a language and M, N be two L-structures.
(1) An L-embedding from M to N is a one-to-one function ρ : M→ N such that1

• for each c ∈ LC,
ρ(cM) = cN

• for all f ∈ LF and all a ∈ Mn f ,

ρ( fM(a)) = fM(ρ(a))

• for all R ∈ LR and all a ∈ MnR ,

a ∈ RM ⇐⇒ ρ(a) ∈ RN.

We write ρ : M→ N.

(2) An L-embedding from M to N is an L-isomorphism if it is onto. In this case
we write M ∼= N

(3) If M ⊆ N and the inclusion map i : M→ N is an L-embedding, then we say
that M is a substructure N. In this case we write M ⊆ N. Notice that M ⊆ N

if and only if

• for each c ∈ LC, we have cM = cN,

• for each f ∈ LF, we have fM = fN�Mn f ,

• for any R ∈ LR, we have RM = RN ∩MnR .

Example 1.8. t
(1) In Lg, we have that (N,+, 0) is substructure of (Z,+, 0).
(2) Let ρ : Z → R be the function ρ(x) = ex. Then ρ is an Lg-embedding from

(Z,+, 0) to (R,×, 1).

1.2. Syntax. So far we have set aside the fact that we would also like to have avail-
able certain axioms to help us characterize some structures. By our experience (for
example with groups) these axioms are properties that one is able to write down
using the symbol in our language together with other logical symbols as well as
variables. For example think of the group axiom ∀x∃y(x ∗ y = e).

In this section, starting with a language L we will explain how to form syntacti-
cally correct expression using the symbols in L. We will come back to axioms later.
So throughout, we let L be a language. We also assume that we have available to us
a fixed set of variables VL = {vi : i ∈ N}. We also assume we have available the
equality symbol “=” and the following logical symbols

1If a = (a1, . . . , an) we use here the notation ρ(a) = (ρ(a1), . . . , ρ(an)).
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¬ ∧ ∨ ∀ ∃
not and or for all there exists

We begin by describing which functions can be defined from the constant and func-
tion symbols in L.

Definition 1.9. The set of L-terms is the smallest set T such that
• if c ∈ LC is a constant symbol, then c ∈ T;

• if v ∈ VL is a variable, then v ∈ T;

• if f ∈ LF is a function symbol and t1, . . . , tn f ∈ T, then f (t1, . . . , tn f ) ∈ T.

Example 1.10. In the language Lg = {∗, e} of groups, we have the Lg-terms

e x ∗ y x ∗ e ∗ y

Notice that we have used the usual math notation to write the above terms. For-
mally we should have written ∗(x, y) and ∗(∗(x, e), y) instead of x ∗ y and x ∗ e ∗ y
respectively. Clearly, this abuse of notation is justified. Also notice that we will use
other letters (such as x, y, z,...) to denote the variables. Hopefully it will always be
clear from the context what is being meant.

Next, let us define the simplest kind of formulas

Definition 1.11. An atomic L-formula is a string of symbols of the form
(1) t1 = t2, where t1 and t2 are L-terms, or

(2) R(t1 . . . , tnR), where R ∈ LR and t1 . . . , tnR are L-terms.

In the language of Lor = Lr ∪ {<} of ordered rings,

x < y x− y < 0 x× y < x + y

are atomic L-formula. Again, for example, we use x < y instead of < (x, y).
Finally, by using the logical symbols we can recursively define all formulas

Definition 1.12. The set of L-formulas is the smallest F such that
(1) if φ is an atomic L-formula, then φ ∈ F,

(2) if φ ∈ F, then ¬φ ∈ F,

(3) if φ, ψ ∈ F, then φ ∧ ψ ∈ F and φ ∨ ψ ∈ F,

(4) if φ ∈ F and v ∈ VL is a variable, then ∃v φ ∈ F and ∀v φ ∈ F.

Remark 1.13. It is worth noting that there are several logical abbreviations that one
can (and we will) use. For example ∀vφ can be seen as an abbreviation for ¬∃v ¬φ.
Similarly φ ∨ ψ is an abreviation for ¬(¬φ ∧ ¬ψ). The notations (φ → ψ) and (φ ↔
ψ) are abbreviations for (¬φ ∨ ψ) and (φ→ ψ) ∨ (φ→ ψ) respectively.

Let us look at the example of group.
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Example 1.14. We can “now” write down the axioms of group theory in the lan-
guage Lg = {∗, e} and it will not be hard to see that they are formulas as defined
above.

∀x (e ∗ x = x ∗ e = x)
∀x∀y∀z ((x ∗ y) ∗ z = x ∗ (y ∗ z))
∀x∃y (x ∗ y = y ∗ x = e)

We can also look at other formulas such as

∀y (x ∗ y = y ∗ x)

which “expresses that x is a central element”.

In the above example, there is one noticeable difference between the three axioms
and the fourth formula: in the latter there is one variable x that is not in the scope of
(or not bound by) any quantifier ∃x and ∀x.

Definition 1.15. Suppose φ is an L-formula. We say that a variable x is free in φ,
it does not appear in the scope of a quantifier ∃x and ∀x. We also say that φ is an
L-sentence it has no free variable.

As we have seen above, the L-sentences are the so-called mathematical “axioms”.
We will explore these formulas in more details in the second lecture.

Notation 1.16. We will write φ(x1, . . . , xn) to highlight that the free variables of a
formula φ are from the set {x1, . . . , xn}. So in the previous example, we would write
φ(x) := ∀y (x ∗ y = y ∗ x). We can also write φ(y) := ∀x (e ∗ x = x ∗ e = x).

So far, formulas are simply string of symbols that have been put together in some
coherent way. We end this section by formalizing the idea that the formula φ(x) :=
∀y (x ∗ y = y ∗ x) “expresses that x is a central element”. We first need to describe
how to interpret L-terms in a structure.

Definition 1.17. Let M be an L-structure and t(x1, . . . , xn) be an L-terms. The inter-
pretation of t(x) in M is the function tM : Mn → M define inductively as

(1) If t is a constant symbol c ∈ LC, then for any a ∈ Mn we set

tM(a) = cM.

(2) If t is a variable symbol vi ∈ VL, then for any a ∈ Mn we set

tM(a) = ai.

(3) if t is f (t1, . . . , tn f ), where f ∈ LF is a function symbol and t1(x), . . . , tn f (x)
are L-terms, then

tM(a) = fM(tM1 (a), . . . , tMn f
(a))

In Example 1.10 above, if t(x, y) is the Lg-term t(x, y) = x ∗ y, then in any Lg-
structure t is simply function corresponding to pairwise multiplication. We are
ready to give the definition of satisfaction in an L-structure.
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Definition 1.18. Let M be an L-structure and φ(x1, . . . , xn) an L-formula. For a ∈
Mn we inductively define

M |= φ(a),
which reads φ(a) is true in M as follows:

(1) If φ(x) := (t1 = t2) where t1(x), t2(x) are L-terms, then M |= φ(a) means
that tM1 (a) = tM2 (a).

(2) If φ(x) := R(t1, . . . , tnR), where R ∈ LR is a relation sym-
bol and t1(x), . . . , tnR(x) are L-terms, then M |= φ(a) means that
(tM1 (a), . . . , tMnR

(a)) ∈ RM.

(3) If φ := ¬ψ for some L-formula ψ(x), then M |= φ(a) means that M 6|= ψ(a).

(4) If φ := ψ ∧ θ for some L-formulas ψ(x) and θ(x), then M |= φ(a) means that
M |= ψ(a) and M |= θ(a).

(5) If φ := ψ ∨ θ for some L-formulas ψ(x) and θ(x), then M |= φ(a) means that
M |= ψ(a) or M |= θ(a).

(6) If φ := ∃v ψ for some L-formulas ψ(x, v), then M |= φ(a) means that there is
b ∈ M such that M |= ψ(a, b).

(7) If φ := ∀v ψ for some L-formulas ψ(x, v), then M |= φ(a) means that M |=
ψ(a, b) for all b ∈ M.

If M |= φ(a) we also say that M satisfies φ(a) or that a satisfies φ(x) in M.

Going back to the formula φ(x) := ∀y (x ∗ y = y ∗ x), if we consider the Lg-
structure R = (R,+, 0), then for any r ∈ R we have R |= φ(r) (this holds of all
Abelian group). So R = {r ∈ R : R |= φ(r)}. More generally, if G = (G, ∗, e) is
a group (so the three sentences in Example 1.14 is true in G), then we see that φ(x)
indeed define its center

Z(G) = {g ∈ G : G |= φ(g)}.
It follows that Z(G) is an example of a definable set, which is one of the most impor-
tant notion in modern Model theory.

Definition 1.19. Let M be an L-structure. A definable set Y ⊆ Mn is a set of the
form

Y = {a ∈ Mn : M |= φ(a)}
where φ(x) is an L-formula with free variables x = (x1, . . . , xn).
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