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RONNIE NAGLOO

4. PROOF OF THE COMPACTNESS THEOREM AND QUANTIFIER ELIMINATION

In this lecture we give a proof of the Compactness Theorem using ultraproducts.
We begin by introducing filters and ultrafilters and show how they can be used to
build new structures from the direct product of a family of structures. This will
go through defining the ultraproduct of the family of structures. We then look at
quantifier elimination, which is a property that holds for some theories and which
greatly helps with the problem of understanding the definable sets.

4.1. Ultraproduct. Throughout, I will be a nonempty set and we denote by P(I)
the power set of I, that is the set of all subsets of I.

Definition 4.1. A subset F ⊆P(I) is said to be a (proper) filter on I if
• I ∈ F and ∅ 6∈ F.
• If A, B ∈ F, then A ∩ B ∈ F.
• If A ∈ F and A ⊆ B ⊆ I, then B ∈ F.

Let us look at some examples.

Example 4.2. d
(1) The set F = {X ⊆ I : I \ X is finite} is a filter on I and is called the Fréchet

filter.
(2) More generally, let κ be an infinite cardinal such that |I| ≥ κ. Then the set

F = {X ⊆ I : |I \ X| < κ} is a filter on I.
(3) In the case I = R, then the set F = {X ⊆ R : R \X has Lebesgue measure 0}

is a filter on R

As we can see, a filter gives a notion of largeness for subset of I.

Definition 4.3. An ultrafilter on I is a maximal filter, i.e., a filter that is not properly
contained in any other filter on I. Let x ∈ I. A principal filter Fx on I the filter
defined as Fx = {X ⊆ I : x ∈ X}.

Proposition 4.4. Let x ∈ I, then Fx is an ultrafilter.

Proof. Assume for contradiction that Fx is not maximal. Let U be a filter on I such
that Fx ⊂ U. So there is X ∈ U \ Fx. By the definition of Fx, it must be that x 6∈ X.
But then since {x} ∈ Fx ⊂ U and X ∈ U it follows that ∅ = {x} ∩ X ∈ U. A
contradiction. �

1



2 RONNIE NAGLOO

Let F be any filter on I. Using Zorn’s Lemma, one can show that the set S = {F′ :
F ⊂ F′ and F′ is a filter on I} has a maximal element U. So we can always extend
F to an ultrafilter U on I. If we assume for example that F is the Fréchet filter on I,
then U will be non-principal since for any x ∈ I the cofinite set I \ {x} ∈ F ⊆ U. The
following is a useful characterization of ultrafilters.

Lemma 4.5. A filter U is an ultrafilter if and only if for every X ⊆ I, either

X ∈ U or I \ X ∈ U.

Proof. ⇒ Assume U is an ultrafilter and let X ⊆ I. Suppose that X 6∈ U. It is not
hard to see that the set

F = {Y ⊆ I : A \ X ⊆ Y for some A ∈ U}
is a filter on I that contains U. Since U is an ultrafilter F = U. By construction
I \ X ∈ F.
⇐ Let U be a filter and assume for all X ⊆ I, either X ∈ U or I \ X ∈ U. Let
V be a filter on I so that U ⊂ V. So there is Y ∈ V \ U. Since Y 6∈ U, by assumption
I \ Y ∈ U ⊂ F. But it follows that ∅ = Y ∩ I \ Y ∈ F a contradiction. Hence U is
maximal. �

So given a set X ⊆ I, an ultrafilter is a decision about which of X or its comple-
ment is large. We are now ready to bring back model theory

4.2. Proof of Compactness. Let L be a language. Assume that we have a family
{Mi : i ∈ I} of L-structures. Recall that the direct product ∏i∈I Mi of the Mis is the
set

∏
i∈I

Mi = { f : I →
⋃
i∈I

Mi : f (i) ∈Mi for all i ∈ I}.

Let U be an ultrafilter on I. We define a relation ∼ on ∏i∈I Mi as follows:

f ∼ g if and only if {i ∈ I : f (i) = g(i)} ∈ U.

Proposition 4.6. The relation ∼ is an equivalence relation on ∏i∈I Mi.

Proof. Let f , g, h ∈ ∏i∈I Mi. Clearly reflexivity and symmetry holds. Let us prove
transitivity: assume f ∼ g and g ∼ h. Then it follows that X = {i ∈ I : f (i) =
g(i)} ∩ {i ∈ I : g(i) = h(i)} ∈ U. It is not hard to see that the set {i ∈ I : f (i) = h(i)}
contains X. Hence since U is a filter, we have that {i ∈ I : f (i) = h(i)} ∈ U. So
f ∼ h. �

For f ∈ ∏i∈I Mi we will denote by f the equivalence class of f under ∼. Using
this equivalence relation, we can construct a new L-structure.

Definition 4.7. Let L be a language and {Mi : i ∈ I} a family of L-structures. The
ultraproduct of {Mi : i ∈ I} is the L-structure M defined as follows1:

1You will show in the problem session that the definition does not depend on the choice of
representatives.
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• The universe is the set

M = { f : f ∈∏
i∈I

Mi}.

• If c ∈ LC is a constant symbol, then

cM = f

where f ∈ ∏i∈I Mi is the function such that f (i) = cMi .

• If f ∈ LF is a function symbol and g1, . . . , gn f ∈ M, then we define

fM(g1, . . . , gn f ) = g

where g ∈ ∏i∈I Mi is the function such that g(i) = fMi(g1(i), . . . , gn f (i)).

• If R ∈ LR is a relation symbol and g1, . . . , gnR ∈ M, then

(g1, . . . , gnR) ∈ RM if and only if {i ∈ I : (g1(i), . . . , gnR(i)) ∈ RMi} ∈ U

We will usually write ∏Mi/U for the ultraproduct M above.

Theorem 4.8 (Loś’ Theorem). Let U be an ultrafilter. Assume {Mi : i ∈ I} is a family of
L-structures and let us write M for the ultraproduct ∏Mi/U. Then

(1) Let t(x1, . . . , xn) be an L-term and f1, . . . , fn ∈ ∏i∈I Mi. Then

tM( f1, . . . , fn) = g

where g ∈ ∏i∈I Mi is the function such that g(i) = tMi( f1(i), . . . , fn(i)).

(2) Let φ(x1, . . . , xn) be an L-formula and f1, . . . , fn ∈ ∏i∈I Mi. Then

M |= φ( f1, . . . , fn) ⇐⇒ {i ∈ I : Mi |= φ( f1(i), . . . , fn(i))} ∈ U

Proof. (1) It is not too hard to see that this follows using induction on the complexity
of terms. We only give the details for the case t is f (t1, . . . , tn f ) with f ∈ LF a
function symbol and t1, . . . , tn f L-terms for which the result already holds. Then

tM( f1, . . . , fn) = fM
(

tM1 ( f1, . . . , fn), . . . , tMn f
( f1, . . . , fn)

)
.

By induction

tM( f1, . . . , fn) = fM(g1, . . . , gn f )

where gk(i) = tMi
k ( f1(i), . . . , fn(i)) for k = 1 . . . n f . By definition

fM(g1, . . . , gn f ) = g
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where g(i) = fMi(g1(i), . . . , gn f (i)). However, notice that

g(i) = fMi
(

tMi
1 ( f1(i), . . . , fn(i)), . . . , tMi

n f ( f1(i), . . . , fn(i))
)

= tMi( f1(i), . . . , fn(i)).

So the result follows.

(2) Using (1) it is not hard to prove the result using induction on the complexity of
φ(x1, . . . , xn). We leave it to the reader to do the atomic steps, the inductive steps of
∧ and ∨ (using the fact that ultrafilters are closed under intersections and unions).
We highlight that the assumption that U is an ultrafilter (as oppose to just a filter) is
required in the case when φ(x) is of the form ¬ψ(x) and the result already holds for
ψ(x). Indeed

M |= φ( f1, . . . , fn) ⇐⇒ M 6|= ψ( f1, . . . , fn)

⇐⇒ {i ∈ I : Mi |= ψ( f1(i), . . . , fn(i))} 6∈ U

⇐⇒ {i ∈ I : Mi |= ¬ψ( f1(i), . . . , fn(i))} ∈ U.

The last equivalence follows using Lemma 4.5 since U is an ultrafilter. We are hence
left (using the usual argument about ∀) to consider the case when φ(x) is of the form
∃yψ(x, y) and the result holds for ψ(x, y). First, if M |= φ( f1, . . . , fn) then there is
g ∈ M such that M |= ψ( f1, . . . , fn, g). Using the induction hyposithesis

X := {i ∈ I : Mi |= ψ( f1(i), . . . , fn(i), g(i))} ∈ U.

But the set {i ∈ I : Mi |= ∃yψ( f1(i), . . . , fn(i), y)} contains X. Since U is an ultrafilter,
the result follows. On the other hand if Y = {i ∈ I : Mi |= ∃yψ( f1(i), . . . , fn(i), y)} ∈
U, then we can define g ∈ ∏i∈I Mi such that for each i ∈ Y,

Mi |= ψ( f1(i), . . . , fn(i), g(i)).

Since {i ∈ I : Mi |= ψ( f1(i), . . . , fn(i), g(i))} contains Y it must be in U. By induction
M |= ψ( f1, . . . , fn, g) and hence M |= φ( f1, . . . , fn). �

We are now ready to prove the Compactness Theorem.

Theorem 3.5 (Compactness Theorem). Suppose T is an L-theory. T is consistent if and
only if every finite subset of T is consistent.

Proof. We only need to prove the right to left assertion. So assume that every finite
subset of T is consistent. Let I be the set of all finite subsets of T. By assumption, we
have a family {Mi : i ∈ I} of L-structures such that Mi |= i for each i ∈ I. We build
a filter on I as follows (keep in mind that elements of I are subsets of T): first we
build a set F of subsets of I that does not contain ∅, contains I and is closed under
intersection. Indeed we can take F = {Xi : i ∈ I}, where for each i ∈ I, Xi ⊆ I is
the set of all finite subsets of T containing all the elements of i. Notice that I = X∅
and Xi ∩ Xj = Xi∪j. Next, all we need to do is closed under containment by letting
F = {X ⊆ I : Xi ⊆ X for some i ∈ I}. It follows that F is a filter on I.
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Let U be an ultrafilter on I extending F. We show that the ultraproduct M :=
∏Mi/U is a model of T. Let φ ∈ T and consider the set X{φ} of finite subsets
containing φ. If i ∈ X{φ}, then since Mi |= i and φ ∈ i, we get that Mi |= φ. So
X{φ} ⊆ {i ∈ I : Mi |= φ}. Since U is an ultrafilter and X{φ} ∈ U, we get that
{i ∈ I : Mi |= φ} ∈ U. By Theorem 4.8 (Loś’ Theorem), M |= φ and so T is
consistent. �

4.3. Quantifier Elimination. As already mentioned in the second lecture, for a fixed
theory T a major goal of model theory is to study all definable sets in some/any
model of T. This of course would be hopeless unless one could identify classes
of structures where there are some control over the definable sets. In model theory,
this leads the distinction between “tame” and “wild” structures or theories. We now
discuss one notion of tameness, namely quantifier elimination. Throughout we take
L to be a language and T be a consistent L-theory.

Definition 4.9. We say T has quantifier elimination (QE) if every L-formula is
equivalent modulo T to a quantifier free L-formula. More precisely, for any L-
formula φ(x) there is a quantifier free L-formula ψ(x) such that

T |= ∀x(φ(x)↔ ψ(x))

Example 4.10. Consider R = (R,+,−,×, 0, 1,<) in Lr. Let

φ(a, b, c) := a 6= 0∧ ∃x(a2x + bx + c = 0)

and
ψ(a, b, c) := b2 − 4ac ≥ 0.

Then Th(R) |= ∀a∀b∀c(φ(a, b, c)↔ ψ(a, b, c)).

For theories with quantifier elimination, the definable sets are defined using “sim-
ple” formulas. Here are some other consequences of QE.

Proposition 4.11. Suppose T has quantifier elimination and let M and N be models of T.
Then

(1) If A is a substructure of both M and N, then for any L-formula φ(x) and every
a ∈ An we have that

M |= φ(a) ⇐⇒ N |= φ(a).

(2) T is model complete. That is if M ⊆ N then M � N.

Proof. (1) This follows since we already showed in Proposition 2.13 that if A ⊆ M

and ψ(x) is quantifier free, then for a ∈ An

A |= ψ(a) ⇐⇒ M |= ψ(a).

(2) This simply follows from definition after applying (1) to the case A = M. �

We end this lecture by giving a criterion to check whether a given theory has QE.
We will not give a proof (cf. [1, Corollary 3.16]). By a literal we mean an atomic or
negated atomic formula.
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Proposition 4.12 (Test for QE). Suppose the L-theory T satisfies the following condition:

(∗) For any M,N |= T with a common substructure A, and any formula
φ(x) which is a conjunction of LA-literals in one free variable, if there is
m ∈ M such that M |= φ(m) then there is n ∈ N such that N |= φ(n).

Then T has quantifier elimination.

Steps in the proof. The proof goes by first showing that a converse of Proposition 4.11
(1) holds: if A is a substructure of both M and N and φ(y) is an L-formula such that
for every a ∈ An we have that M |= φ(a) if and only if N |= φ(a), then φ(y) is
equivalent modulo T to a quantifier free formula. This is [1, Theorem 3.1.4]. On the
other hand, one can also shows that to prove QE, it is enough to restrict to the case of
formulas φ(y) of the form ∃xψ(y, x) for a quantifier free ψ(y, x). This is [1, Lemma
3.1.5]. So in summary, this gives [1, Corollary 3.16]: whenever A is a substructure
of M,N |= T and a quantifier free formula ψ(y, x), if a ∈ An then M |= ∃xψ(a, x)
if and only if N |= ∃xψ(a, x), then T has quantifier elimination. Noting that ψ(a, x)
“is” a quantifier free LA-formula, we almost get (∗). It is not hard to show using
De Morgan’s laws about how negation interacts with conjunctions and disjunctions
that it is enough to assume ψ(a, x) is a conjunction of LA-literals. �

Example 4.13. We show that T∞, the theory of infinite sets has QE. Recall that we
work in the language L∅ = {∅}. Suppose M and N are two infinite set that both
contain a nonempty set A. It is not hard to see that the only atomic LA-formulas in
one variable x are of the form

x = x or x = a for some a ∈ A.

The formula x = x is satisfied by any element in any model of T∞ and the formula
x 6= x is not satisfied by any elements of any models of T∞. So it is not hard to see
that we only have to consider the case of an LA-formula φ(x) of the form

p∧
i=1

(x = ai) ∧
q∧

i=1

(x 6= bi)

with a1, . . . , ap, b1, . . . , bq ∈ A. Assume for some m ∈ M, we have that M |= φ(m).
Then, if at least one of the x = ai appear in φ(x), it follows that m = ai ∈ A for all
1 ≤ i ≤ p and also m 6= bi for all 1 ≤ i ≤ q. But then m ∈ N and we have that
N |= φ(m). On the other hand, if no x = ai appears in φ(x), then

φ(x) :=
q∧

i=1

(x 6= bi)

and since N is infinite we can find n ∈ N so that n 6= bi for all 1 ≤ i ≤ q. Hence
N |= φ(n).

In the last two lectures we will see examples of more interesting theories that have
QE.
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