MODEL THEORY PROBLEM SET 1

Beginner problems

- Question 1: Let $\mathcal{L}_r = \{0, 1, +, \times, -\}$ denote the language of rings. Consider the fields \mathbb{R} and \mathbb{C} as \mathcal{L}_r -structures. Find an \mathcal{L}_r -sentence ϕ so that
 - (a) $\mathbb{C} \models \phi$ and $\mathbb{R} \not\models \phi$.
 - (b) $\mathbb{R} \models \phi$ and $\mathbb{C} \not\models \phi$.
- Question 2: In lectures we saw that the language $\mathcal{L}_g = \{*, e\}$ can be used to write down the axioms of groups. Find a language $\mathcal{L}_{\mathbb{Q}^{v.s.}}$ which can be used to write out the axioms of \mathbb{Q} -vector spaces. Hint: you may need to use an infinite language.
- Question 3: Consider the group of integers \mathbb{Z} as an \mathcal{L}_g -structure. Prove that the set of even integers is definable. That is, find an \mathcal{L}_g -formula $\phi(x)$ such that

$$\mathbb{Z} \models \phi(a) \Longleftrightarrow a \text{ is even}$$

for all $a \in \mathbb{Z}$.

Question 4: Let $\rho : \mathcal{M} \to \mathcal{N}$ be an \mathcal{L} -isomorphism. Prove that

$$\mathcal{M} \models \phi(\bar{a}) \Longleftrightarrow \mathcal{N} \models \phi(\rho(\bar{a}))$$

for all \mathcal{L} -formulas ϕ and all $\bar{a} \in M^n$.

Question 5: Let $\phi(x)$ be an \mathcal{L} -formula and n a natural number. Show that there is an \mathcal{L} -sentence ψ such that $\mathcal{M} \models \psi$ if and only if the definable set $Y = \{a \in M : \mathcal{M} \models \phi(a)\}$ has exactly n elements. What about expressing that Y has at most n elements? At least n elements? Infinitely many elements?

Intermediate problems

- Question 6: Let $\mathcal{L}_r = \{0, 1, +, \times, -\}$ denote the language of rings. Consider the fields \mathbb{Q} and $\mathbb{Q}(\sqrt{2})$, which are \mathcal{L}_r -structures.
 - (a) Are \mathbb{Q} and $\mathbb{Q}(\sqrt{2})$ isomorphic as \mathcal{L}_r -structures?
 - (b) Is there an \mathcal{L}_r -sentence which is true in one of these fields but not on the other?
- **Question 7:** A quantifier free \mathcal{L} -formula is an \mathcal{L} -formula which does not contain any instances of \forall or \exists . Prove that every \mathcal{L} -formula ϕ is equivalent to an \mathcal{L} -formula of the form

 $Q_1 x_1 \cdots Q_n x_n \psi,$

where ψ is a quantifier free \mathcal{L} -formula and each Q_i is either \forall or \exists .

- **Question 8:** An existential \mathcal{L} -formula is an \mathcal{L} -formula of the form $\exists x_1 \cdots \exists x_n \psi(x_1, \ldots, x_n)$, where ψ is a quantifier free \mathcal{L} -formula. Likewise, a **universal** \mathcal{L} -formula has the form $\forall x_1 \cdots \forall x_n \psi(x_1, \ldots, x_n)$, where ψ is quantifier free. Let \mathcal{M} be an \mathcal{L} -substructure of \mathcal{N} . Prove that
 - (a) If ϕ is an existential \mathcal{L} -formula, then $\mathcal{M} \models \phi(\bar{a}) \Longrightarrow \mathcal{N} \models \phi(\bar{a})$ for all $\bar{a} \in M^k$.
 - (b) If ϕ is a universal \mathcal{L} -formula, then $\mathcal{N} \models \phi(\bar{a}) \Longrightarrow \mathcal{M} \models \phi(\bar{a})$ for all $\bar{a} \in M^k$.
- **Question 9:** Let \mathcal{L} be a finite language and let \mathcal{M} be a finite \mathcal{L} -structure. Prove that there is a sentence ϕ such that $\mathcal{N} \models \phi$ if and only if $\mathcal{M} \cong \mathcal{N}$.

Advanced problems

- Question 10: Let $\mathcal{L} = \{0, 1, +, \times, -, \exp\}$ denote the language of exponential rings. Consider the exponential field (\mathbb{C} , exp) as an \mathcal{L} -structure. Prove that the set of integers $\mathbb{Z} \subseteq \mathbb{C}$ is \mathcal{L} -definable.
- Question 11: Consider the language $\mathcal{L} := \{0, 1, +, \times, -, <, f\}$, where f denotes a function symbol in one variable. We can think of \mathbb{R} as an \mathcal{L} -structure by choosing a function $F : \mathbb{R} \to \mathbb{R}$, where fis interpreted as F and the other symbols have their usual interpretations.
 - (a) Write an \mathcal{L} -sentence which says that $\lim_{x\to 0} F(x) = 1$.
 - (b) Write a sentence saying that F is continuous on \mathbb{R} .

Question 12: Given a sentence ϕ , the *spectrum of* ϕ is the set of natural numbers n such that there is $\mathcal{M} \models \phi$ with $|\mathcal{M}| = n$.

- (a) Let $\mathcal{L} = \{E\}$, where E is a binary relation. Write down a sentence ϕ in this language that expresses that E is an equivalence relation where each equivalence class has exactly 2 elements. Prove that the spectrum of ϕ is the set of positive even integers.
- (b) Find a language \mathcal{L} and an \mathcal{L} -sentence ϕ such that the spectrum of ϕ is $\{n^2 : n \in \mathbb{N}, n > 0\}$.
- (c) Find a language \mathcal{L} and an \mathcal{L} -sentence ϕ such that the spectrum of ϕ is $\{p^n : p \text{ is prime}, n > 0\}$.