MODEL THEORY PROBLEM SET 1

Beginner problems

Question 1: Let $\mathcal{L}_{r}=\{0,1,+, \times,-\}$ denote the language of rings. Consider the fields \mathbb{R} and \mathbb{C} as \mathcal{L}_{r}-structures. Find an \mathcal{L}_{r}-sentence ϕ so that
(a) $\mathbb{C} \models \phi$ and $\mathbb{R} \not \vDash \phi$.
(b) $\mathbb{R} \models \phi$ and $\mathbb{C} \not \vDash \phi$.

Question 2: In lectures we saw that the language $\mathcal{L}_{g}=\{*, e\}$ can be used to write down the axioms of groups. Find a language $\mathcal{L}_{\mathbb{Q} \text { v.s. }}$ which can be used to write out the axioms of \mathbb{Q}-vector spaces. Hint: you may need to use an infinite language.

Question 3: Consider the group of integers \mathbb{Z} as an \mathcal{L}_{g}-structure. Prove that the set of even integers is definable. That is, find an \mathcal{L}_{g}-formula $\phi(x)$ such that

$$
\mathbb{Z} \models \phi(a) \Longleftrightarrow a \text { is even }
$$

for all $a \in \mathbb{Z}$.
Question 4: Let $\rho: \mathcal{M} \rightarrow \mathcal{N}$ be an \mathcal{L}-isomorphism. Prove that

$$
\mathcal{M} \models \phi(\bar{a}) \Longleftrightarrow \mathcal{N} \models \phi(\rho(\bar{a}))
$$

for all \mathcal{L}-formulas ϕ and all $\bar{a} \in M^{n}$.
Question 5: Let $\phi(x)$ be an \mathcal{L}-formula and n a natural number. Show that there is an \mathcal{L}-sentence ψ such that $\mathcal{M} \models \psi$ if and only if the definable set $Y=\{a \in M: \mathcal{M} \models \phi(a)\}$ has exactly n elements. What about expressing that Y has at most n elements? At least n elements? Infinitely many elements?

Intermediate problems

Question 6: Let $\mathcal{L}_{r}=\{0,1,+, \times,-\}$ denote the language of rings. Consider the fields \mathbb{Q} and $\mathbb{Q}(\sqrt{2})$, which are \mathcal{L}_{r}-structures.
(a) Are \mathbb{Q} and $\mathbb{Q}(\sqrt{2})$ isomorphic as \mathcal{L}_{r}-structures?
(b) Is there an \mathcal{L}_{r}-sentence which is true in one of these fields but not on the other?

Question 7: A quantifier free \mathcal{L}-formula is an \mathcal{L}-formula which does not contain any instances of \forall or \exists. Prove that every \mathcal{L}-formula ϕ is equivalent to an \mathcal{L}-formula of the form

$$
Q_{1} x_{1} \cdots Q_{n} x_{n} \psi
$$

where ψ is a quantifier free \mathcal{L}-formula and each Q_{i} is either \forall or \exists.
Question 8: An existential \mathcal{L}-formula is an \mathcal{L}-formula of the form $\exists x_{1} \cdots \exists x_{n} \psi\left(x_{1}, \ldots, x_{n}\right)$, where ψ is a quantifier free \mathcal{L}-formula. Likewise, a universal \mathcal{L}-formula has the form $\forall x_{1} \cdots \forall x_{n} \psi\left(x_{1}, \ldots, x_{n}\right)$, where ψ is quantifier free. Let \mathcal{M} be an \mathcal{L}-substructure of \mathcal{N}. Prove that
(a) If ϕ is an existential \mathcal{L}-formula, then $\mathcal{M} \models \phi(\bar{a}) \Longrightarrow \mathcal{N} \models \phi(\bar{a})$ for all $\bar{a} \in M^{k}$.
(b) If ϕ is a universal \mathcal{L}-formula, then $\mathcal{N} \models \phi(\bar{a}) \Longrightarrow \mathcal{M} \models \phi(\bar{a})$ for all $\bar{a} \in M^{k}$.

Question 9: Let \mathcal{L} be a finite language and let \mathcal{M} be a finite \mathcal{L}-structure. Prove that there is a sentence ϕ such that $\mathcal{N} \models \phi$ if and only if $\mathcal{M} \cong \mathcal{N}$.

Advanced problems

Question 10: Let $\mathcal{L}=\{0,1,+, \times,-, \exp \}$ denote the language of exponential rings. Consider the exponential field (\mathbb{C}, \exp) as an \mathcal{L}-structure. Prove that the set of integers $\mathbb{Z} \subseteq \mathbb{C}$ is \mathcal{L}-definable.

Question 11: Consider the language $\mathcal{L}:=\{0,1,+, \times,-,<, f\}$, where f denotes a function symbol in one variable. We can think of \mathbb{R} as an \mathcal{L}-structure by choosing a function $F: \mathbb{R} \rightarrow \mathbb{R}$, where f is interpreted as F and the other symbols have their usual interpretations.
(a) Write an \mathcal{L}-sentence which says that $\lim _{x \rightarrow 0} F(x)=1$.
(b) Write a sentence saying that F is continuous on \mathbb{R}.

Question 12: Given a sentence ϕ, the spectrum of ϕ is the set of natural numbers n such that there is $\mathcal{M} \models \phi$ with $|M|=n$.
(a) Let $\mathcal{L}=\{E\}$, where E is a binary relation. Write down a sentence ϕ in this language that expresses that E is an equivalence relation where each equivalence class has exactly 2 elements. Prove that the spectrum of ϕ is the set of positive even integers.
(b) Find a language \mathcal{L} and an \mathcal{L}-sentence ϕ such that the spectrum of ϕ is $\left\{n^{2}: n \in \mathbb{N}, n>0\right\}$.
(c) Find a language \mathcal{L} and an \mathcal{L}-sentence ϕ such that the spectrum of ϕ is $\left\{p^{n}: p\right.$ is prime, $\left.n>0\right\}$.

