MODEL THEORY PROBLEM SET 2

Beginner problems

Question 1: Let $\mathcal{L}_r = \{0, 1, +, \times, -\}$ denote the language of rings. Is \mathbb{R} an elementary substructure of \mathbb{C} in this language?

Question 2: Let \mathcal{L} be a language and let \mathcal{M} be an \mathcal{L} -structure. Show that

- (a) If $A, B \subseteq M^n$ are definable sets, then so are $A \cup B, A \cap B$ and $M^n \setminus A$.
- (b) If $A \subseteq M^n$ and $B \subseteq M^m$ are definable sets, then so is $A \times B$.
- (c) If n and m are positive integers satisfying m < n, $A \subseteq M^n$ and $B \subseteq M^m$ are definable sets, and pr : $M^n \to M^m$ is the coordinate projection onto the first m coordinates, then pr(A) and pr⁻¹(B) are also definable.
- Question 3: Let $\mathcal{L} = \{0, 1, +, \times, <\}$, and consider \mathbb{N} as an \mathcal{L} -structure. Show that any definable subset of $A \subseteq \mathbb{N}^m$ is can be defined by an \mathcal{L} -formula which doesn't use any parameters.

Question 4: Let $\mathcal{K} \subseteq \mathcal{M} \subseteq \mathcal{N}$ be \mathcal{L} -structures.

- (a) Show that if $\mathcal{K} \leq \mathcal{M}$ and $\mathcal{M} \leq \mathcal{N}$, then $\mathcal{K} \leq \mathcal{N}$.
- (b) Show that if $\mathcal{K} \leq \mathcal{N}$ and $\mathcal{M} \leq \mathcal{N}$, then $\mathcal{K} \leq \mathcal{M}$.
- Question 5: Suppose that for each $i \in \mathbb{N}$, \mathcal{M}_i is an \mathcal{L} -structure, and that $\mathcal{M}_i \leq \mathcal{M}_{i+1}$ (such a sequence is called an *elementary chain*). There is a natural \mathcal{L} -structure \mathcal{M} on $M := \bigcup_{i \in \mathbb{N}} M_i$ (if the structure is not clear, take some time to work out what it should be). Prove that
 - (a) for every $i \in \mathbb{N}$, $\mathcal{M}_i \leq \mathcal{M}$, and
 - (b) if $\mathcal{N} \geq \mathcal{M}_i$ for every $i \in \mathbb{N}$, then $\mathcal{M} \leq \mathcal{N}$.

Intermediate problems

- Question 6: Consider the language $\mathcal{L} := \{0, 1, +, \times, -, <, f\}$, where f denotes a function symbol in one variable. We can think of \mathbb{R} as an \mathcal{L} -structure by choosing a function $F : \mathbb{R} \to \mathbb{R}$, where fis interpreted as F and the other symbols have their usual interpretations. Show that the set of points where F is discontinuous is definable.
- Question 7: Let $\mathcal{L} = \{0, +\}$, and consider \mathbb{Z} as an \mathcal{L} -structure. Let m be a positive integer. Show that the function $f : \mathbb{Z} \to \mathbb{Z}$ defined as f(x) = mx is not an elementary embedding.
- **Question 8:** Let $\mathcal{L} = \{0, 1, +, \times, -, <\}$, and consider \mathbb{R} as an \mathcal{L} -structure. Let $A \subseteq \mathbb{R}^n$ be a definable set. Show that the closure of A (in the Euclidean topology) is also a definable set.
- **Question 9:** Let \mathcal{M} be an \mathcal{L} -structure, and let $A \subseteq \mathcal{M}$. Given an element $a \in M$, we *a* is *A*-definable to mean that $\{a\}$ is *A*-definable. We can then define the *definable closure of* A *in* \mathcal{M} to be $dcl^{\mathcal{M}}(A) := \{a \in M : a \text{ is } A\text{-definable}\}.$
 - (a) Suppose that $\mathcal{M} \leq \mathcal{N}$ and $A \subseteq M$. Prove that $dcl^{\mathcal{M}}(A) = dcl^{\mathcal{N}}(A)$.
 - (b) Show that the above can fail if we only assume that $M \subseteq N$ and $\mathcal{M} \equiv \mathcal{N}$.

Advanced problems

- Question 10: A structure \mathcal{M} is called *ultrahomogeneous* if any isomorphism between finitely generated substructures of \mathcal{M} extends to an automorphism of \mathcal{M} . Prove that $(\mathbb{Q}, <)$ is homogeneous by showing that for any two finite substructures $A, B \subseteq Q$ and any isomorphism $\rho : A \to B$, there is an automorphism $\tilde{\rho} : \mathbb{Q} \to \mathbb{Q}$ extending ρ .
- **Question 11:** A structure \mathcal{M} is called *rigid* if the only automorphism of \mathcal{M} is the identity map. Prove that the field $(\mathbb{R}, +, -, \times, 0, 1)$ is rigid. Hint, first, try showing that the field $(\mathbb{Q}, +, -, \times, 0, 1)$ is rigid. Then show that the *ordered* field $(\mathbb{R}, +, -, \times, 0, 1, <)$ is rigid. Finally, use that the ordering on \mathbb{R} is definable in the field $(\mathbb{R}, +, -, \times, 0, 1)$.