MODEL THEORY PROBLEM SET 4

Beginner problems

Question 1: (a) Let \mathcal{F} be a filter on I, and suppose that $X \notin \mathcal{F}$. Let $\mathcal{F}^{\prime}=\{Y \subseteq I: \exists Z \in$ $\mathcal{F}, Z \backslash X \subseteq Y\}$. Prove that \mathcal{F}^{\prime} is a filter, $\mathcal{F} \subseteq \mathcal{F}^{\prime}$, and $I \backslash X \in \mathcal{F}^{\prime}$.
(b) Prove that every filter can be extended to an ultrafilter. (Hint: use Zorn's lemma.)

Question 2: Prove that in the definition of an ultraproduct, the interpretation of function and relation symbols does not depend on the choice of representative. That is, given a family of \mathcal{L}-structures $\left\{\mathcal{M}_{i}: i \in I\right\}$ and an ultrafilter \mathcal{U} on I, prove that:
(a) if $f \in \mathcal{L}_{\mathcal{F}}$ is a function symbol and $g_{1}, \ldots, g_{n_{f}}, g_{1}^{\prime}, \ldots, g_{n_{f}}^{\prime} \in \prod_{i \in I} \mathcal{M}_{i}$ are such that $g_{i} \sim$ g_{i}^{\prime} for $i=1, \ldots, n_{f}$, then taking $g, g^{\prime} \in \prod_{i \in I} \mathcal{M}_{i}$ to be the functions such that $g(i)=$ $f^{\mathcal{M}_{i}}\left(g_{1}(i), \ldots, g_{n_{f}}(i)\right)$ and $g^{\prime}(i)=f^{\mathcal{M}_{i}}\left(g_{1}^{\prime}(i), \ldots, g_{n_{f}}^{\prime}(i)\right)$, we have that $g \sim g^{\prime}$; and
(b) if $R \in \mathcal{L}_{\mathcal{C}}$ is a relation symbol and $g_{1}, \ldots, g_{n_{R}}, g_{1}^{\prime}, \ldots, g_{n_{R}}^{\prime} \in \prod_{i \in I} \mathcal{M}_{i}$, then

$$
\left\{i \in I:\left(g_{1}(i), \ldots, g_{n_{R}}(i)\right) \in R^{\mathcal{M}_{i}}\right\} \in \mathcal{U} \Longleftrightarrow\left\{i \in I:\left(g_{1}^{\prime}(i), \ldots, g_{n_{R}}^{\prime}(i)\right) \in R^{\mathcal{M}_{i}}\right\} \in \mathcal{U}
$$

Question 3: (a) Let $\mathcal{L}=\{0,1,+, \times,-\}$ be the language of rings, and let T be the theory of fields. Let $\phi(u)$ be the formula $\exists v(u v=1)$. Find a quantifier-free formula $\psi(u)$ such that $T \models \forall u(\phi(u) \Longleftrightarrow \psi(u))$.
(b) Let $\mathcal{L}=\{0,1,+, \times,-,<\}$ be the language of ordered rings, and consider \mathbb{R} as an \mathcal{L}-structure. Let T be the complete first-order theory of \mathbb{R} in this language. Let $\phi(x)$ be the formula $\exists y\left(x=y^{2}\right)$. Find a quantifier-free formula $\psi(u)$ such that $T \models \forall u(\phi(u) \Longleftrightarrow \psi(u))$.

Question 4: Use the compactness theorem to show that for every field F there is a field extension L such that there exists an element $t \in L$ which is transcendental over F.

Intermediate problems

Question 5: Let $\mathcal{L}=\{0,1,+, \times,-\}$ be the language of rings, and consider \mathbb{C} as an \mathcal{L}-structure. Let T be the complete first-order theory of \mathbb{C} in this language. Let $\phi(a, b, c, d)$ be the formula

$$
\exists x_{1} \exists x_{2} \exists x_{3} \exists x_{4}\left(\bigwedge_{i=1}^{4} x_{i}^{4}+a x_{i}^{3}+b x_{i}^{2}+c x_{i}+d=0 \wedge \bigwedge_{i<j} x_{i} \neq x_{j}\right) .
$$

Find a quantifier-free formula $\psi(a, b, c, d)$ such that

$$
T \models \forall a \forall b \forall c \forall d(\phi(a, b, c, d) \Longleftrightarrow \psi(a, b, c, d)) .
$$

Question 6: Let I be an infinite set. Prove that any nonprincipal ultrafilter \mathcal{U} on I extends the Fréchet filter.

Question 7: Let \mathbb{P} be the set of prime numbers and let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{P}. For each $p \in \mathbb{P}$, consider the cyclic group $\mathbb{Z} / p \mathbb{Z}$, and let \mathcal{G} be the ultraproduct

$$
\mathcal{G}=\left(\prod_{p \in \mathbb{P}} \mathbb{Z} / p \mathbb{Z}\right) / \mathcal{U}
$$

Then \mathcal{G} is a group by Loś' Theorem, and we let 0 denote the identity element of \mathcal{G}.
(a) Prove that \mathcal{G} is torsion-free: for all $a \in \mathcal{G}$, if $a \neq 0$, then $n a \neq 0$ for any nonzero $n \in \mathbb{N}$.
(b) Use Loś' Theorem to conclude that the class of groups with a torsion element (that is, an element $a \neq 0$ with $n a=0$ for some nonzero $n \in \mathbb{N}$) is not axiomatizable.

Question 8: Let \mathbb{P} be the set of prime numbers and let \mathcal{U} be a nonprincipal ultrafilter on \mathbb{P}. For each $p \in \mathbb{P}$, consider the finite field \mathbb{F}_{p}, and let F be the ultraproduct

$$
F=\prod_{p \in \mathbb{P}} \mathbb{F}_{p} / \mathcal{U} .
$$

(a) What can you say about the characteristic of F ?
(b) Show that F has an algebraic extension of degree n for every n. Challenge: show that these extensions are unique.

Advanced problems

Question 9: Let $\mathcal{L}=\{0,1,+, \times,-,<\}$ be the language of ordered rings, and consider \mathbb{Q} as an \mathcal{L}-structure. Let T be the complete first-order theory of \mathbb{Q} in this language. Let $\phi(x)$ be the formula $\exists y\left(x=y^{2}\right)$. Is it possible to find a quantifier-free formula $\psi(u)$ such that $T \models$ $\forall u(\phi(u) \Longleftrightarrow \psi(u))$?

Question 10: (a) Use Proposition 4.12 (Test for QE) to prove that DLO, the theory of dense linear orders without endpoints, has quantifier elimination.
(b) Use part (a) to show that \mathbb{Z} is not a definable subset of $(\mathbb{Q},<)$. Hint: show that any definable subset of \mathbb{Q} is a finite union of points $\{a\}$ and open intervals (b, c).

Question 11: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function, let \mathcal{R} be the structure ($\mathbb{R}, 0,1,+, \times,-,<, f$). Let $\mathcal{M}=\left(M, 0,1,+, \times,-,<, f^{\mathcal{M}}\right)$ be an elementary extension of \mathcal{R} which contains infinitesimal elements (such an extension exists by the compactness theorem). Prove that for any $r \in \mathbb{R}$, the function f is continuous at r if and only if $f^{\mathcal{M}}(r+\epsilon)-f^{\mathcal{M}}(r)$ is infinitesimal for all infinitesimal $\epsilon \in M$.

