
Heights of algebraic numbers

Padmavathi Srinivasan

Week 2

Last time we defined the height function H : Q → R, which sends a rational number a/b
written in lowest form to H(a/b) := max(|a|, |b|). The main goal of today’s lecture is to
define heights for a larger class of numbers called “algebraic numbers”. Matt Baker’s course
notes on Algebraic number theory offers a friendly introduction to the subject, with many
explicit Diophantine problems that explain the concrete origins of the subject. We refer the
interested reader to his text for supplementing these lecture notes with proofs of various facts
that we will simply state in these notes. We will give many examples of all the new ideas,
and enough tools to help the reader work through concrete computations on their own.

1 An introduction to Algebraic number theory

Definition 1. A number field is a field K which is a finite extension of Q. The degree [K : Q]
of a number field K is the dimension of K as a Q-vector space. An algebraic number is an
element of a number field K.

Example 2. Let i be the complex number such that i2 = −1. The subset {a+ bi : a, b ∈ Q}
of C is an example of a number field of degree 2.

Observe that if α is an element of a number field K, then the powers of α are also
elements of K and the set

{α, α2, α3, α4, . . .}

is an infinite collection of vectors in the finite dimensional Q vector space K. This means
there has to be a nontrivial linear dependence relation between the various powers of α, or
in other words, there are elements a0, a1, . . . , an in Q, not all zero, such that

aoα
n + a1α

n−1 + . . .+ an = 0.

We can scale any such relation by the least common multiple of the denominators of the ai
and further assume that the ai are integers, and such that the gcd(a0, a1, . . . , an) = 1.

Definition 3. The minimal polynomial of an algebraic number α is a polynomial f(x) ∈ Z[x]
of lowest degree such that f(α) = 0 and such that the leading coefficient of f is positive and
the greatest common divisor of all its coefficients is 1. The union of all number fields inside
C is an algebraic closure Q of Q.
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Suggested exercises 4. Prove Gauss’ lemma: a polynomial f := a0x
n + a1x

n−1 + . . .+ an
in Z[x] is irreducible if and only if it is irreducible in Q[x] and gcd(a0, . . . , an) = 1.

Suggested exercises 5. Prove that the minimal polynomial of an algebraic number is an
irreducible element of Z[x].

Suggested exercises 6. If α is a nonzero algebraic number with minimal polynomial
f(x) := a0x

n + a1x
n−1 + . . . + an, then verify that 1/α is also an algebraic number with

minimal polynomial f rev(x) := xnf(1/x) = a0 + a1x + . . . + anx
n if an > 0, and minimal

polynomial −f rev(x) if an < 0.
An element of C that is not an algebraic number is called a transcendental number.

The collection of all algebraic numbers Q is a countable subfield of the uncountable field
C. This means there are uncountably many transcendental numbers out there, although
it is really difficult to prove that any given number is actually transcendental! The most
famous examples of transcendental numbers are e and π.1 Another class of examples of
transcendental numbers are the Liouville numbers – these are numbers that are too well
approximated by rational numbers to be algebraic. For example, Liouville’s constant defined
to be the number

∞∑
k=1

1

10k!
= 0.110001000000000000000001...

is a transcendental number. See your homework to learn more about Liouville numbers!
Back to algebraic numbers – how do we build number fields? One way is to start with an

irreducible polynomial f in Q[x], observe that it generates a maximal ideal of the polynomial
ring Q[x] and take the quotient K := Q[x]/(f(x)) – this is a field! Using the polynomial
f to iteratively rewrite the higher powers of x as a linear combination of the monomials
1, x, x2, . . . , xn−1, one can directly check that a basis for K as a Q vector space is given by
the classes of 1, x, x2, . . . , xn−1 modulo the ideal (f(x)). In other words, the field K is a
number field of degree n. Note that this larger field K now has a root of the previously
irreducible polynomial f(x) ∈ Q[x] – namely the class of x modulo the ideal (f) is a root
of the polynomial f in the field K! Here are some examples of algebraic numbers and their
minimal polynomials.

Algebraic number Minimal polynomial Number field Degree
a/b ∈ Q bx− a Q 1

gcd(a, b) = 1, b > 0
i x2 + 1 Q(i) ∼= Q[x]/(x2 + 1) 2√

2 + 1 (x− 1)2 − 2 Q(
√
2) ∼= Q[x]/(x2 − 2) 2

3
√
2 x3 − 2 Q( 3

√
2) ∼= Q[x]/(x3 − 2) 3

ζp, a primitive p-th root φp(x) :=
xp−1
x−1

Q(ζp) ∼= Q[x]/(φp(x)) p− 1

of unity for a prime p p-th cyclotomic polynomial p-th cyclotomic field

It is natural to ask if every number field arises from the construction above. The answer
is yes, and this is known as the primitive element theorem.

1See this Numberphile video for Hermite’s proof that e is transcendental.
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Fact 1. [Bak22, Theorem A.6] Every number field K is of the form Q[x]/(f(x)) for some
irreducible polynomial f(x) ∈ Q[x]. A root of the polynomial f in K is called a primitive
element.

Example 7. The intersection of all the subfields of R containing the two quadratic (i.e. degree
2) subfields Q(

√
2) and Q(

√
3) is a number field called a “biquadratic field”. This number

field can be written as Q[x]/(f(x)) for f(x) = x4 − 10x2 + 1 – the polynomial f(x) is the
minimal polynomial of the algebraic number

√
2 +

√
3.

To define the height of an algebraic number, we need a measure of its size. One way
to achieve this is to view our algebraic number as a complex number, and use the usual
complex absolute value to measure size. It turns out if an algebraic number α has minimal
polynomial of degree n, then there are precisely n different ways to view it as a complex
number. More precisely,

Lemma 8. Every algebraic number field K of degree n admits precisely n distinct embeddings
σ1, σ2, . . . , σn : K → C.

Proof. Use Fact 1 to write K as Q[x]/(f(x)). Any embedding K ↪→ C is completely deter-
mined by where x goes, and x must be sent to a root of the polynomial f in C. Since any
irreducible polynomial of degree n in Q[x] has n distinct roots in C, the result follows.

Suggested exercises 9. Prove the claim that any irreducible polynomial of degree n in
Q[x] has n distinct roots in C.

Armed with these embeddings, we are now ready to extend our previous definition of
height function from Q to arbitrary algebraic numbers.

2 The height of an algebraic number

Definition 10. Let α be an algebraic number in a number field K of degree n with minimal
polynomial a0x

n + a1x
n−1 + . . .+ an ∈ Z[x]. Let α1, α2, . . . , αn be the images of α under the

n-embeddings of K into C – these are called the n conjugates of α. Define the Weil/absolute
height2 H(α) of α by

H(α) :=

(
|a0|

∏
i

max(1, |αi|)

)1/n

,

and the Weil/absolute logarithmic height h(α) of α by

h(α) := logH(α).

2The quantity H(α)n := |a0|
∏

i max(1, |αi|) is called the Mahler measure of the polynomial f . One can
more generally talk about the Mahler measure for any polynomial in C[x] and there is a formula for it as a
contour integral on the unit circle in C. See [Wal00][§ 3.3]
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Algebraic number α Minimal polynomial Conjugates of α Absolute height
a/b ∈ Q bx− a a/b |b|max(1, |a/b|)

gcd(a, b) = 1, b > 0 = max(|a|, |b|)
i x2 + 1 i,−i 1√

2 + 1 (x− 1)2 − 2 1 +
√
2, 1−

√
2

√√
2 + 1

3
√
2 x3 − 2 3

√
2, 3
√
2ζ3,

3
√
2ζ23

3
√
2

1/ 3
√
2 2x3 − 1 1/ 3

√
2, 1/ 3

√
2ζ3, 1/

3
√
2ζ23

3
√
2

√
2 +

√
3 x4 − 10x2 + 1

√
2 +

√
3,−

√
2 +

√
3,

√
(
√
2 +

√
3)√

2−
√
3,−

√
2−

√
3

ζp, p prime φp(x) :=
xp−1
x−1

ζp, ζ
2
p , . . . , ζ

p−1
p 1

Suggested exercises 11. Suppose that the minimal polynomial f ∈ Z[x] of α factors as

f(x) = a0x
n + . . .+ an = a0(x− α1) · · · (x− αn)

over C. Then prove that for every i between 0 and n, we have

ai/a0 = (−1)i
∑

1≤s1<s2<···<si≤n

αs1αs2 · · ·αsi .

We now record some properties of the height function. Part d below, the Northcott
property is the most important of them all, and explains why the definition above is a good
definition for the height of an algebraic number. When we work with algebraic numbers of
arbitrary degree, it is important to upgrade the earlier statement of Northcott property for
rational numbers from looking at numbers of bounded height to looking at algebraic numbers
of bounded height and bounded degree. A reason for this is the collection of all roots of unity
is an infinite set of algebraic numbers all of which have height 1. We say that two algebraic
numbers α and α′ are conjugate if they have the same minimal polynomial.

Proposition 12.

(a) If α and α′ are conjugate, then H(α) = H(α′).

(b) H(α) ≥ 1 for every algebraic number α.

(c) (canonical height property) For every m ∈ Z and nonzero algebraic number α, we have
H(αm) = H(α)|m|.

(d) (Northcott property) There are only finitely many algebraic numbers of bounded height
and bounded degree.

Proof. Part a is clear from the definition of H. Part b is immediate since the height is
defined to be a root of a product of numbers, each of which is greater than or equal to 1.

Factor the minimal polynomial f ∈ Z[x] of α as

f(x) = a0x
n + . . .+ an = a0(x− α1) · · · (x− αn),
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where α1, α2, . . . , αn are the conjugates of α in C. By exercise 11, we have an/a0 =
∏

i αi.
Combining this with the definition of the height function and exercise 6, shows H(α−1) =
H(α). (Prove this!) So it suffices to prove part c when m ≥ 1. Fix m ≥ 1. Consider the
polynomial g defined by

g(x) := am0 (x− αm
1 ) · · · (x− αm

n ).

One can show g(x) ∈ Z[x] and that it is a power of the minimal polynomial of αm. Combining
this with the definition of height function once again, we get that H(αm) = H(α)m. This
proves part c.

Fix a degree n ≥ 1 and a bound N ≥ 1. We will show that there are finitely many degree
n algebraic numbers of height at most N . Let f(x) := a0x

n + a1x
n−1 + . . . + an ∈ Z[x] be

the minimal polynomial of such a number. We will show that there are only finitely many
possibilities for f by proving an upper bound on |ai| depending only on n and N . Exercise 11
gives us the bound

|ai| ≤ |a0|
(
n

i

)(
n

max
j=1

|αj|
)i

.

Combining this inequality with the bounds

|a0| ≤ H(α)n, and
n

max
j=1

|αj| ≤ H(α)n,

we get

|ai| ≤
(
n

i

)
H(α)n(i+1) ≤ 2nNn(n+1).

In fact, the proof above suggests another equally good definition of a height of an algebraic
number α. View the coefficients of the minimal polynomial a0x

n + . . .+ an as giving a point
[a0 : a1 : · · · : an] in Pn(Q). Using the definition of heights of points in Pn(Q) from last time,
we can define

H2(α) := H([a0 : a1 : · · · : an]).
Note that the Northcott property for the height functionH2 (the statement in Lemma 12 d)

is true, and actually even easier to prove than the statement for H! Our proof above implic-
itly compares the two height functions H and H2.

Suggested exercises 13. There is also a third definition of a height function H3, in terms

of the house and denominator den of an algebraic number α (See also [Wal00][§ 3.4]):

(α) := |α| = n
max
j=1

|αj|

den(α) := min{D ∈ Z : D > 0, Dα has a monic minimal polynomial in Z[x]}

H3(α) := den(α)max(1, (α)).

Prove that den(α) is well-defined and divides the leading coefficient a0 of the minimal poly-
nomial a0x

n + . . .+ an of α. Prove explicit inequalities relating H(α), H2(α) and H3(α).

Theorem 14 (Kronecker). Let α be a nonzero algebraic number. Then H(α) = 1 (equiva-
lently h(α) = 0) if and only if α is a root of unity.
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Proof. If α is a root of unity, then its minimal polynomial has leading coefficient 1 and all
the conjugates of α lie on the unit circle. It follows that H(α) = 1.

Suppose H(α) = 1. Then H(αn) = H(α)n = 1 for all n ≥ 1 by Lemma 12 c. If α belongs
to a number field K, so do all powers of α, and it follows that all powers of α have degree
bounded by degree of K. Therefore, the collection of algebraic numbers

S := {α, α2, α3, α4, . . .}
has bounded height (by 1) and bounded degree (by [K : Q]). By the Northcott property
(Lemma 12 d), it follows that S is finite. This means there are two integers n > m such that
αn = αm. Since α ̸= 0 this is equivalent to αn−m = 1.

Remark 15. The roots of unity are exactly the collection of all torsion points for multiplica-
tion in the group C∗. Kronecker’s theorem admits a generalization to elliptic curves. We will
prove that the set of points on an elliptic curve of logarithmic canonical height 0 are precisely
the torsion points. The argument is identical, once we know that the analogous canonical
height property ĥE(mP ) = m2ĥE(P ) and the Northcott property holds for canonical heights
for points on elliptic curves.

It is an open problem (called “Lehmer’s problem”) whether H(α)n can get arbitrarily close
to 1 for α an algebraic number of degree n that is not a root of unity. We can immediately
see using our earlier table of examples with α = 21/n that H(α)n = 2. (This example also
explains why it is H(α)n that appears in the formulation of this problem, and not H(α)
itself, since 21/n → 1 as n → ∞.) The current record for the smallest value for H(α)n found
by Lehmer in 1933 is

H(α)10 = 1.176280818 . . .

and this was for any root of the polynomial (called Lehmer’s polynomial)

L(z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1.

In 1965, Schinzel and Zassenhaus proposed a closely related conjecture to Lehmer’s problem.
Recall the definitions of house and denominator of an algebraic number from exercise 13.
Let α be a nonzero algebraic number of degree n ≥ 2 and denominator 1 that is not a root of
unity. The Schinzel-Zassenhaus conjecture predicts that there is an absolute constant c such
that

(α) = |α| > 1 +
c

n
for every number α as above. This conjecture was very recently proved by Dimitrov in 2019,
who showed that for any such α

(α) = |α| ≥ 21/4n ∼ 1 +
log(2)

4n
.

3 Revisiting heights on projective spaces

Recall that we defined the height of a point P = [x0 : x1 : . . . : xn] of Pn(Q) by first saying
that every point of Pn(Q) has a representative where the xi are in Z and gcd(x0, x1, . . . , xn) =
1, and defined H(P ) = max(|x0|, |x1|, . . . , |xn|). To extend this definition to points of Pn(K)
for a number field K, we first need an analogue of the integers inside a general number K.
Defining the ring of algebraic integers OK of K will be the starting point of our next lecture.
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