HEIGHTS PROBLEM SET 1

Below you will find some problems to work on for Week 1! There are three categories: beginner, intermediate and advanced. The exercises are meant to get a feeling for projective varieties over \mathbb{Q} and heights. Choose the ones that intrigue you! We begin by collecting some useful definitions.

Definition 1. Recall that projective N-space over a field K, denoted by \mathbb{P}^{N} or $\mathbb{P}^{N}(K)$, is the set of all ($N+1$)-tuples

$$
\left(x_{0}, \ldots, x_{N}\right) \in K^{N+1}
$$

such that at least one x_{i} is nonzero, modulo the equivalence relation

$$
\left(x_{0}, \ldots, x_{N}\right) \sim\left(y_{0}, \ldots, y_{N}\right)
$$

if there exists a $\lambda \in K \backslash\{0\}$ such that $x_{i}=\lambda y_{i}$ for all i. An equivalence class

$$
\left\{\left(\lambda x_{0}, \ldots, \lambda x_{N}\right): \lambda \in K \backslash\{0\}\right\}
$$

is denoted by $\left[x_{0}, \ldots, x_{N}\right]$, and the x_{i} are called homogeneous coordinates for the corresponding point in \mathbb{P}^{N}.

Definition 2. A polynomial $f \in K\left[X_{0}, \ldots, X_{N}\right]$ is homogeneous of degree d if

$$
f\left(\lambda X_{0}, \ldots, \lambda X_{N}\right)=\lambda^{d} f\left(X_{0}, \ldots, X_{N}\right) \quad \text { for all } \lambda \in K
$$

Definition 3. A rational map of degree d between projective spaces is a map

$$
\begin{gathered}
\varphi: \mathbb{P}^{N} \rightarrow \mathbb{P}^{M} \\
\varphi(P)=\left[f_{0}(P), \ldots, f_{M}(P)\right]
\end{gathered}
$$

where $f_{0}, \ldots, f_{M} \in K\left[X_{0}, \ldots, X_{N}\right]$ are homogeneous polynomials of degree d with no common factors. The rational map φ is defined at P if at least one of the values $f_{0}(P), \ldots, f_{M}(P)$ is non-zero. The rational $\operatorname{map} \varphi$ is called a morphism if it is defined at every point of $\mathbb{P}^{N}(K)$. If the polynomials f_{0}, \ldots, f_{N} have coefficients in a subfield L of K, we say that φ is defined over L.

For our purposes, we will often consider projective spaces over the field $\overline{\mathbb{Q}}$ of algebraic numbers (roots of polynomial equations over \mathbb{Q}), which will be covered in Lecture 2 if you are not already familiar with it. We will be able to define a very useful notion of height for points in such spaces, but for now we define the height in the simple case of \mathbb{Q}-rational points in \mathbb{P}^{N} i.e. the set

$$
\mathbb{P}^{N}(\mathbb{Q})=\left\{\left[x_{0}, \ldots, x_{N}\right] \in \mathbb{P}^{N}: \text { all } x_{i} \in \mathbb{Q}\right\}
$$

Definition 4. Given a point $P=\left[x_{0}, \ldots, x_{N}\right] \in \mathbb{P}^{N}(\mathbb{Q})$, we may assume that the homogeneous coordinates satisfy

$$
\begin{equation*}
x_{0}, \ldots, x_{N} \in \mathbb{Z} \quad \text { and } \quad \operatorname{gcd}\left(x_{0}, \ldots, x_{N}\right)=1 \tag{1}
\end{equation*}
$$

(see Question 2). Having done this, we define the height of P to be

$$
H(P)=\max \left\{\left|x_{0}\right|, \ldots,\left|x_{N}\right|\right\}
$$

and the logarithmic height of P to be $h(P)=\log H(P)$.
Definition 5. Let $f \in \overline{\mathbb{Q}}\left[X_{0}, \ldots, X_{N}\right]$ be a homogeneous polynomial. Then, we can define the projective subvariety

$$
V(F):=\left\{P \in \mathbb{P}^{n}: f(P)=0\right\}
$$

cut out by F (see Question 3). We sometimes write $C: F=G$ as shorthand to denote $C=V(F-G)$, e.g. $E: Y^{2} Z=X^{3}-432 Z^{3}$ would mean $E:=V\left(Y^{2} Z-\left(X^{3}+432 Z^{3}\right)\right)$.

Earlier, we defined rational maps and morphisms between projective spaces. One can similarly define rational maps and morphisms between projective varieties. The general definition is a bit involved, but for the purposes of this problem set, examples of the following form suffice.
Definition 6. Let $f\left(X_{0}, \ldots, X_{N}\right), g\left(X_{0}, \ldots, X_{M}\right)$ be homogeneous polynomials cutting out projective subvarieties $X=V(f) \subset \mathbb{P}^{N}$ and $Y=V(g) \subset \mathbb{P}^{M}$. Let $\varphi_{0}, \ldots, \varphi_{M} \in \overline{\mathbb{Q}}\left[T_{0}, \ldots, T_{N}\right]$ be homogeneous polynomials all of the same degree d, so they define a rational map

$$
\varphi:=\left(\varphi_{0}, \ldots, \varphi_{M}\right): \mathbb{P}^{N} \rightarrow \mathbb{P}^{M}
$$

If $\varphi(P) \in Y(\overline{\mathbb{Q}})$ for all $P \in X(\overline{\mathbb{Q}})$ at which φ is defined, then the restriction $\left.\varphi\right|_{X}: X \rightarrow Y$ gives an example of a rational function from X to Y. This φ will be a morphism from X to Y if $\varphi(P)$ is defined for all $P \in X(\overline{\mathbb{Q}})$ (even if $\varphi(P)$ is not defined for all $P \in \mathbb{P}^{N}(\overline{\mathbb{Q}})$). If there exists a morphism $\psi: Y \rightarrow X$ so that $\varphi \circ \psi=\operatorname{id}_{Y}$ and $\psi \circ \varphi=\operatorname{id}_{X}$, then we say that φ (and so also ψ) is an isomorphism.
In general, one can define rational functions $X \rightarrow Y$ which do not necessarily extend to rational functions $\mathbb{P}^{N} \longrightarrow \mathbb{P}^{M}$, but we will not see those in this problem set.
Example. Consider the elliptic curve $E: y^{2}=x^{3}-x$. There is an isomorphism $\varphi: E \rightarrow E$ given by $\varphi(x, y)=(-x, i y)$.

Beginner problems

Question 1. Let $x_{1}, \ldots, x_{n} \in \mathbb{Q}$. Prove the following basic properties of the height $H(p / q)=\max \{|p|,|q|\}$ for rational numbers:
(a) $H\left(x_{1} \cdots x_{n}\right) \leqslant H\left(x_{1}\right) \cdots H\left(x_{n}\right)$;
(b) $H\left(x_{1}+\cdots+x_{n}\right) \leqslant n H\left(x_{1}\right) \cdots H\left(x_{n}\right)$.

Question 2. Show that given any point $P=\left[x_{0}, \ldots, x_{N}\right] \in \mathbb{P}^{N}(\mathbb{Q})$, we may choose the homogeneous coordinates x_{i} to satisfy the conditions in (1).
Question 3. Let $f\left(T_{0}, T_{1}, \ldots, T_{n}\right)$ be a homogeneous polynomial. Given a point $P=\left[x_{0}, \ldots, x_{n}\right] \in$ $\mathbb{P}^{n}(\overline{\mathbb{Q}})$, note that the expression $f(P)=f\left(x_{0}, \ldots, x_{n}\right)$ is not well-defined; that is, its value can depend on a choice of representative for P. Despite this, show that the if $f\left(x_{0}, \ldots, x_{n}\right)=0$, then $f\left(y_{0}, \ldots, y_{n}\right)=0$ for any other choice of $y_{0}, \ldots, y_{n} \in \overline{\mathbb{Q}}$ so that $P=\left[y_{0}, \ldots, y_{n}\right]$. Because of this, our notation

$$
V(f):=\left\{P \in \mathbb{P}^{n}: f(P)=0\right\} \subset \mathbb{P}^{n},
$$

from Definition 1 is justified.
Question 4. Say \mathbb{P}^{2} is given homogeneous coordinates $[X: Y: Z]$. Consider the elliptic curves

$$
V:=V\left(X^{3}+Y^{3}=Z^{3}\right) \text { and } W:=V\left(Y^{2} Z=X^{3}-432 Z^{3}\right) .
$$

Show that $\varphi=[12 Z, 36(X-Y), X+Y]: V \rightarrow W$ is a morphism. For something a bit harder, show that φ is in fact an isomorphism.
Question 5. Verify that $(1,1)$ is a point of order 4 on the elliptic curve $E_{1}: y^{2}=x^{3}-x^{2}+x$, and that $(0,2)$ is a point of order 3 on the elliptic curve $E_{2}: y^{2}=x^{3}+4$.
Question 6. We saw in lecture that the set

$$
\left\{(a, b, c) \in \mathbb{Z}^{3}: \operatorname{gcd}(a, b, c)=1, a^{2}+b^{2}=c^{2}, \text { and } z \neq 0\right\}
$$

of primitive Pythagorean triples is in bijection with the set

$$
P:=\left\{(u, v) \in \mathbb{Q}^{2}: u^{2}+v^{2}=1\right\}
$$

of rational points on the unit circle. We further saw that there is a map

$$
\begin{array}{rlc}
f: \mathbb{Q} & \longrightarrow & P \\
t & \longmapsto & \left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)
\end{array}
$$

which is injective with image $P \backslash\{(-1,0)\}$. We want to give a projective interpretation of these observations.
(a) Convince yourself that we can view \mathbb{Q} as a subset of $\mathbb{P}^{1}(\mathbb{Q})$ via $t \mapsto[t, 1]$. Similarly, show that we can view P as a subset of $\mathbb{P}^{2}(\mathbb{Q})$ via $(u, v) \mapsto[u, v, 1]$ and show that this in fact gives a bijection $P \cong C(\mathbb{Q})$ onto the \mathbb{Q}-points of $C:=V\left(X^{2}+Y^{2}=Z^{2}\right)$.
(b) Show that the map $f: \mathbb{Q} \rightarrow P$ extends $]^{1}$ to the rational map $\varphi: \mathbb{P}^{1} \rightarrow C$ given by

$$
\varphi([X, Y])=\left[Y^{2}-X^{2}, 2 X Y, Y^{2}+X^{2}\right] .
$$

Furthermore, show that φ is in fact an isomorphism. Hence, primitive Pythagorean triples are parameterized by $\mathbb{P}^{1}(\mathbb{Q})$ without caveats (the missing point $(-1,0) \in P$ from before now corresponds to the point $\left.\infty:=[1,0] \in \mathbb{P}^{1}(\mathbb{Q})\right)$.
Question 7. Show that the rational map $\varphi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ given by

$$
\varphi([X, Y, Z])=\left[X^{2}-Y^{2}, X Y-Z^{2}, Y^{2}-Z^{2}\right]
$$

is not a morphism.

Intermediate problems

Question 8. Verify that the doubling map for the elliptic curve $y^{2}=x^{3}+1$ is given by

$$
P=(x, y) \mapsto 2 P=\left(\frac{x^{4}-8 x}{4 x^{3}+4}, \frac{2 x^{6}+40 x^{3}}{8 y^{3}}\right) .
$$

Note that we cannot plug in the point $(-1,0)$ on the curve into the formula above - can you explain why?
The map $f(x)=\frac{x^{4}-8 x}{4 x^{3}+4}$ is an example of a Lattès map. A Lattès map is a rational function (i.e. a ratio of two polynomials) that describes the x-coordinate of the point $2 P$ in terms of the x-coordinate of P for some elliptic curve.

Question 9. Let

$$
\begin{equation*}
\nu(B)=\#\left\{P \in \mathbb{P}^{N}(\mathbb{Q}): H(P) \leqslant B\right\} . \tag{2}
\end{equation*}
$$

Find positive constants c_{1} and c_{2} such that

$$
c_{1} B^{N+1} \leqslant \nu(B) \leqslant c_{2} B^{N+1}
$$

for all $B \geqslant 1$.
Question 10. Consider the hyperplane

$$
X:=V\left(a_{0} x_{0}+\ldots+a_{N+1} x_{N+1}\right) \subset \mathbb{P}^{N+1}
$$

where $a_{0}, \ldots, a_{N+1} \in \mathbb{Q}$ are not all zero. Show that, for each integer $M \geqslant 1$,

$$
\{P \in X(\mathbb{Q}): H(P) \leqslant M\} \leqslant C(2 M+1)^{(N+1)}
$$

for some constant $C>0$. [Hint: Construct an isomorphism between X and \mathbb{P}^{N}].
Question 11. Let $\varphi: \mathbb{P}^{N} \rightarrow \mathbb{P}^{M}$ be a rational map of degree d, defined over \mathbb{Q}. Prove that there exists a constant $C>0$, depending only on φ, such that

$$
h(\varphi(P)) \leqslant d h(P)+C
$$

for all $P \in \mathbb{P}^{N}(\mathbb{Q})$ at which φ is defined.
In fact, if φ is a morphism, it is also possible to prove a lower bound of the form $h(\varphi(P)) \geqslant d h(P)-C$, but we will not yet do so. For now, consider the following example. View the map φ from Question 6 (b) as a morphism $\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ of degree 2 , and compute explicit constants $C_{1}, C_{2}>0$ such that

$$
2 h(P)-C_{1} \leqslant h(\varphi(P)) \leqslant 2 h(P)+C_{2}
$$

[^0]for all $P \in \mathbb{P}^{1}(\mathbb{Q})$.
Question 12. For $P=\left[x_{0}, \ldots, x_{N}\right] \in \mathbb{P}^{N}$ and $Q=\left[y_{0}, \ldots, y_{M}\right] \in \mathbb{P}^{M}$, define
$$
P \star Q=\left[x_{0} y_{0}, x_{0} y_{1}, \ldots, x_{i} y_{j}, \ldots, x_{N} y_{M}\right] \in \mathbb{P}^{M N+M+N} .
$$

The map $(P, Q) \mapsto P \star Q$ is called the Segre embedding of $\mathbb{P}^{N} \times \mathbb{P}^{M}$ into $\mathbb{P}^{M N+M+N}$.
Prove that

$$
H(P \star Q)=H(P) H(Q)
$$

for any $P \in \mathbb{P}^{N}(\mathbb{Q})$ and $Q \in \mathbb{P}^{M}(\mathbb{Q})$.
Question 13. Let $M=\binom{N+d}{N}-1$ and let f_{0}, \ldots, f_{M} be the distinct monomials of degree d in the $N+1$ variables X_{0}, \ldots, X_{N}. For any point $P=\left[x_{0}, \ldots, x_{N}\right] \in \mathbb{P}^{N}$, let

$$
P^{(d)}=\left[f_{0}(P), \ldots, f_{M}(P)\right] \in \mathbb{P}^{M} .
$$

The map $P \mapsto P^{(d)}$ is called the d-uple embedding of \mathbb{P}^{N} into \mathbb{P}^{M}.
Prove that

$$
H\left(P^{(d)}\right)=H(P)^{d}=H\left(\left[x_{0}^{d}, \ldots, x_{N}^{d}\right]\right)
$$

for all $P=\left[x_{0}, \ldots, x_{N}\right] \in \mathbb{P}^{N}(\mathbb{Q})$.
Question 14. This question deals with complex multiplication (CM) in elliptic curves, which will come up later in the course! Let E be an elliptic curve over \mathbb{C}.
(a) Show that $\mathbb{Z} \subseteq \operatorname{End}(E)$, where $\operatorname{End}(E)$ denotes the ring of morphisms $E \rightarrow E$ that are also group homomorphisms.
(b) We say that E has complex multiplication if $\mathbb{Z} \subsetneq \operatorname{End}(E)$. This is, E possesses "additional symmetries". Show that the curve $E: y^{2}=x^{3}-x$ has complex multiplication over \mathbb{C}.
(c) Find a curve E without complex multiplication. Hint: use the LMFDB.

Advanced problems

Question 15. When $N=1$, prove that

$$
\lim _{B \rightarrow \infty} \frac{\nu(B)}{B^{2}}=\frac{12}{\pi^{2}}
$$

where ν is defined as in (2) More generally, prove that the limit $C(N):=\lim _{B \rightarrow \infty} \nu(B) / B^{N+1}$ exists, and express it in terms of a value of the Riemann ζ-function. Can you prove the more precise asymptotic behaviour

$$
\nu(B)= \begin{cases}\frac{12}{\pi^{2}} B^{2}+O(B \log B) & N=1 \\ C(N) B^{N+1}+O\left(B^{N}\right) & N>1\end{cases}
$$

as $B \rightarrow \infty$?
Question 16. Let $E: y^{2}=x^{3}+A x+B$ and $E^{\prime}: y^{2}=x^{3}+A^{\prime} x+B^{\prime}$ be two elliptic curves. We let the same letters E, E^{\prime} denote also the corresponding projective varieties

$$
E: Y^{2} Z=X^{3}+A X Z^{2}+B Z^{3} \text { and } E^{\prime}: Y^{2} Z=X^{3}+A^{\prime} X Z^{2}+B^{\prime} Z^{3}
$$

Let $\varphi: E \rightarrow E^{\prime}$ be an isomorphism such that $\varphi([0: 1: 0])=[0: 1: 0]$. Show that φ must be of the form

$$
\varphi([X, Y, Z])=\left[\lambda^{2} X: \lambda^{3} Y: Z\right]
$$

for some $\lambda \in \overline{\mathbb{Q}}$. Given that φ is of this form, write A^{\prime}, B^{\prime} in terms of A, B, λ.

[^0]: ${ }^{1}$ By ' φ extends f ' we mean that if $t \in \mathbb{Q}$, and $f(t)=(u, v)$, then $\varphi([t, 1])=[u, v, 1]$.

