HEIGHTS PROBLEM SET 2

Below you will find some problems to work on for Week 2! There are three categories: beginner, intermediate and advanced.

Beginner problems

Question 1. Suppose that the minimal polynomial $f \in \mathbb{Z}[x]$ of α factors as

$$
f(x)=a_{0} x^{n}+\ldots+a_{n}=a_{0}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)
$$

over \mathbb{C}. Then prove that for every i between 0 and n, we have

$$
a_{i} / a_{0}=(-1)^{i} \sum_{1 \leqslant s_{1}<s_{2}<\cdots<s_{i} \leqslant n} \alpha_{s_{1}} \alpha_{s_{2}} \cdots \alpha_{s_{i}}
$$

Question 2. In this problem, you will show that $H\left(\alpha^{-1}\right)=H(\alpha)$.
(a) If α is a nonzero algebraic number with minimal polynomial $f(x):=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$, then verify that $1 / \alpha$ is also an algebraic number with minimal polynomial

$$
f^{\mathrm{rev}}(x):=x^{n} f(1 / x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}
$$

if $a_{n}>0$, and minimal polynomial $-f^{\mathrm{rev}}(x)$ if $a_{n}<0$.
(b) Describe the roots of $f^{\mathrm{rev}}(x)$ in terms of the roots of $f(x)$.
(b) Show that $H\left(\alpha^{-1}\right)=H(\alpha)$. Hint: use Question 1 .

Question 3. This question will introduce you to splitting fields and get you more comfortable computing with number fields. Recall the table from Padma's notes:

Algebraic number	Minimal polynomial	Number field	Degree
$a / b \in \mathbb{Q}$	$b x-a$	\mathbb{Q}	1
$\operatorname{gcd}(a, b)=1, b>0$		$\mathbb{Q}(i) \cong \mathbb{Q}[x] /\left(x^{2}+1\right)$	2
i	$x^{2}+1$	$\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[x] /\left(x^{2}-2\right)$	2
$\sqrt{2}+1$	$(x-1)^{2}-2$	$\mathbb{Q}(\sqrt[3]{2}) \cong \mathbb{Q}[x] /\left(x^{3}-2\right)$	3
$\sqrt[3]{2}$	$x^{3}-2$	$\mathbb{Q}\left(\zeta_{p}\right) \cong \mathbb{Q}[x] /\left(\varphi_{p}(x)\right)$	$p-1$
ζ_{p}, a primitive p-th root of unity for a prime p	p-th cyclotomic polynomial	p-th cyclotomic field	

(a) For each of the rows of the table, do the following.

- Find all of the roots of the minimal polynomial over the number field. How many roots do you find?
- Factor the minimal polynomial over the number field.
(c) Answer the same questions for the polynomial $f(x):=x^{3}-2$ over $S:=\mathbb{Q}[x] /\left(x^{6}-108\right)$. You should only get linear factors. We call the number field S the splitting field of $f(x)$: the smallest field extension of the base field over which $f(x)$ splits (decomposes into linear factors).

Intermediate problems

Question 4. Prove Gauss' lemma: a polynomial $f:=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ in $\mathbb{Z}[x]$ is irreducible if and only if it is irreducible in $\mathbb{Q}[x]$ and $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$.

Question 5. Prove that any irreducible polynomial of degree n in $\mathbb{Q}[x]$ has n distinct roots in \mathbb{C}.

Question 6. There is also a third definition of a height function H_{3}, in terms of the house \mathbb{A} and denominator den of an algebraic number α (See also Wal00][§ 3.4]):

$$
\begin{aligned}
\mathbb{A}(\alpha) & :=\overline{|\alpha|}=\max _{j=1}^{n}\left|\alpha_{j}\right| \\
\operatorname{den}(\alpha) & :=\min \{D \in \mathbb{Z}: D>0, D \alpha \text { has a monic minimal polynomial in } \mathbb{Z}[x]\} \\
H_{3}(\alpha) & :=\operatorname{den}(\alpha) \max (1, \widehat{\mathbb{A}}(\alpha)) .
\end{aligned}
$$

Prove that den (α) is well-defined and divides the leading coefficient a_{0} of the minimal polynomial $a_{0} x^{n}+$ $\ldots+a_{n}$ of α. Prove explicit inequalities relating $H(\alpha), H_{2}(\alpha)$ and $H_{3}(\alpha)$.

Question 7. Fix $m \geqslant 1$. Consider the polynomial g defined by

$$
g(x):=a_{0}^{m}\left(x-\alpha_{1}^{m}\right) \cdots\left(x-\alpha_{n}^{m}\right) .
$$

Show that $g(x) \in \mathbb{Z}[x]$ and that it is a power of the minimal polynomial of α^{m}.
Question 8. Consider an algebraic number α with minimal polynomial $f(x)=a_{0} x^{n}+\ldots+a_{n} \in \mathbb{Z}[x]$, and conjuagtes $\alpha_{1}, \ldots, \alpha_{n}$. Let

$$
\operatorname{Disc}(f)=\alpha_{0}^{2 n-2} \prod_{i>j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

be the discriminant of f. Show that

$$
\frac{1}{n} \log |\operatorname{Disc}(f)| \leqslant \log n+(2 n-2) h(\alpha) .
$$

Advanced problems

Question 9.

(a) Prove Liouville's inequality, namely that if α is an algebraic irrational number of degree $n \geqslant 2$, then there is a constant C (depending on α), such that for any rational number a / b with $b>0$, we have

$$
\left|\alpha-\frac{a}{b}\right| \geqslant C / b^{n} .
$$

(Hint: Let f be the minimal polynomial of α. Combine a lower bound on the nonzero rational number $f(a / b)$ and an upper bound for $|f(\alpha)-f(a / b)| /(\alpha-(a / b))$ using the Mean Value Theorem.)
(b) A Liouville number is a real number x with the property that for any integer n, there is a rational number a / b with $b>1$ such that

$$
0<|x-(a / b)|<1 / b^{n} .
$$

Prove that Liouville numbers are transcendental and that Liouville's constant $\sum_{k=1}^{\infty} \frac{1}{10^{k!}}$ is a Liouville number.

References

[Wal00] Michel Waldschmidt, Diophantine approximation on linear algebraic groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 326, Springer-Verlag, Berlin, 2000. Transcendence properties of the exponential function in several variables. MR1756786 \uparrow

