HEIGHTS PROBLEM SET 3

Below you will find some problems to work on for Week 3! There are three categories: beginner, intermediate and advanced.

Beginner problems

Question 1. Prove that for every algebraic number α, there is a nonzero integer $m \in \mathbb{Z}$ such that $m \alpha$ is an algebraic integer.

Question 2.

(1) If α is an algebraic integer with minimal polynomial f of degree n, prove that the discriminant of the power basis generated by α is precisely the discriminant of the polynomial f, and we have $\Delta(\alpha):=\Delta\left(1, \alpha, \ldots, \alpha^{n-1}\right)=(-1)^{\binom{n}{2}} \prod_{i=1}^{n} f^{\prime}\left(\alpha_{i}\right)$. In particular, if $f(x)=x^{2}+a x+b$, then the corresponding discriminant is $b^{2}-4 a$ and if $f(x)=x^{3}+a x+b$, then the corresponding discriminant is $-4 a^{3}-27 b^{2}$.
(2) Let p be a prime and let φ_{p} be the p-th cyclotomic polynomial. That is

$$
\varphi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1 .
$$

Show that the discriminant of the power basis generated by a primitive p-th root of unity ζ_{p} is $\left.(-1){ }_{2}^{(p-1)}\right)^{p-2}$. (Hint: Use the equality $\varphi_{p}(x)(x-1)=x^{p}-1$ and the product rule of differentiation to simplify $\varphi_{p}^{\prime}\left(\zeta_{p}\right)$.)
Question 3. Verify that $2,3,1+\sqrt{-5}, 1-\sqrt{-5}$ are four mutually non-associate irreducible elements in the ring $\mathbb{Z}[\sqrt{-5}]$ that are not prime.
Question 4. Let K / \mathbb{Q} be a degree n number field.
(1) Prove that if I is a nonzero ideal of \mathcal{O}_{K}, then there is a nonzero integer m in $I \cap \mathbb{Z}$.
(2) Show that every nonzero ideal I is a sublattice of \mathcal{O}_{K} of maximal rank, i.e. I has finite index in \mathcal{O}_{K}, and is isomorphic to \mathbb{Z}^{n} as an abelian group.

Question 5. Let $K=\mathbb{Q}(\sqrt{-23})$.
(a) Find \mathcal{O}_{K}.
(b) Prove that the norm map $N: K \rightarrow \mathbb{Q}$ taking $\alpha \rightarrow \alpha \sigma(\alpha)$, where σ is complex conjugation, takes values in \mathbb{Z} when restricted to \mathcal{O}_{K}.
(c) Show that 2 is irreducible in \mathcal{O}_{K} but not prime. Conclude that \mathcal{O}_{K} is not a UFD.

Question 6. Verify that $\sqrt{2}+1$ is a unit in the ring $\mathbb{Z}[\sqrt{2}]$. Use the Minkowski embedding to show that $\sqrt{2}+1$ has infinite order in the group of units of $\mathbb{Z}[\sqrt{2}]$.

Intermediate problems

Question 7. Consider the elliptic curve $E: y^{2}=x^{3}-2$. In this exercise, we will find all integer points on this curve. Fix any $x, y \in \mathbb{Z}$ satisfying $y^{2}=x^{3}-2$.
(1) Show that y is odd.
(2) Note that if we work in the ring $\mathbb{Z}[\sqrt{-2}]$, then we can write

$$
(y+\sqrt{-2})(y-\sqrt{-2})=x^{3} .
$$

Take for granted the fact that $\mathbb{Z}[\sqrt{-2}]$ is a UFD (see Question 14), and show that $y+\sqrt{-2}$ and $y-\sqrt{-2}$ are coprime.
(3) Show that there must exist some unit $u \in \mathbb{Z}[\sqrt{-2}]^{\times}$and some $\alpha \in \mathbb{Z}[\sqrt{-2}]$ so that

$$
y+\sqrt{-2}=u \alpha^{3} .
$$

(4) Show that we can always take $u=1$ above (Hint: if $\alpha \in \mathbb{Z}[\sqrt{-2}] \subset \mathbb{C}$, its complex norm $|\alpha|$ is an integer. Use this to compute $\mathbb{Z}[\sqrt{-2}]^{\times}$.)
(5) At this point, $y+\sqrt{-2}$ must be a cube in $\mathbb{Z}[\sqrt{-2}]$. Directly compute all (finitely many) possible values of y, and then use this to find all integral points of E (See footnote for the end result ${ }^{1}$).

Question 8. Let $K=\mathbb{Q}(\sqrt{7}, \sqrt{-2})$. Enlarge the finite index subgroup of \mathcal{O}_{K} spanned by $1, \sqrt{7}, \sqrt{-2}, \sqrt{-14}$ to a \mathbb{Z}-basis for \mathcal{O}_{K}.

Question 9. Let K be a number field of degree n and $\beta_{1}, \ldots, \beta_{n}$ be \mathbb{Q}-linearly independent algebraic integers in K. Show that the lattice Λ spanned by the images of the β_{i} has rank n in \mathbb{R}^{n} and that the fundamental domain of Λ has volume $2^{-s} \sqrt{\left|\Delta\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)\right|}$, where s is the number of pairs of complex embeddings of K.

Problems 10 and 11 involve working with Galois extensions. Recall that a Galois extension K / F is a field extension $F \subseteq K$ such that
(1) the extension is finite: the dimension of K as a vector space over F, denoted by $[K: F]$, is finite.
(2) the extension is algebraic: for every $\alpha \in K$, there is a nonzero polynomial with coefficients in F such that α is a root of this polynomial;
(3) the extension is normal: Every polynomial in $F[x]$ that has a root in K has all roots in K;
(4) the extension is separable: For every $\alpha \in K$, its minimal polynomial is separable (does not have repeated roots).
Equivalently, an extension K / F is Galois if and only if K is the splitting field of some separable polynomial over F. If K / F is Galois, then we define $\operatorname{Gal}(K / F)$, the Galois group of K / F, to be the group $\operatorname{Aut}(K / F)$. This is, $\operatorname{Gal}(K / F)$ is the group of field automorphisms of K that fix F.

Question 10.

Consider the natural action of S_{n} on $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, namely the permutation action on the indices of the variables. Let $r_{D}=\prod_{i<j}\left(x_{i}-x_{j}\right) \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and let $D=r_{D}^{2}$.
(1) Let $\sigma \in S_{n}$. Show that $\sigma(D)=D$ for all $\sigma \in S_{n}$ and that $\sigma\left(r_{D}\right)=r_{D}$ if and only if $\sigma \in A_{n}$.
(2) Now let p be an irreducible cubic polynomial in $\mathbb{Q}[x]$. Let E be the splitting field of p over \mathbb{Q}, let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be the roots of p in E and let $G:=\operatorname{Gal}(E / \mathbb{Q})$. Show that G is either A_{3} or S_{3}.
(3) Let G be as above. show that $G=A_{3}$ if and only if $r_{D}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{Q}$. (In other words, the discriminant of the polynomial p is a square in \mathbb{Q} if and only if the splitting field of p is a cubic Galois A_{3} extension.) ${ }^{2}$

Question 11.

(1) Let $p(x)=x^{3}-21 x-7$. Show that p is an irreducible polynomial in $\mathbb{Z}[x]$. (Caution: Remember that there is one extra step in going from being irreducible in $\mathbb{Q}[x]$ to being irreducible in $\mathbb{Z}[x])$. Graph the polynomial p and show that all its roots are real.
(2) Compute the discriminant of the polynomial p and show that the splitting field of p is a cubic Galois A_{3} extension of $\mathbb{Q} .{ }^{3}$ (Hint: use Question 10).
(3) Show that if the splitting field of an irreducible cubic polynomial over \mathbb{Q} is an A_{3} extension, then all the roots of the cubic in \mathbb{C} are real. (Remark: The converse is not necessarily true, but an explicit example does not come to mind. Let me know if you find one!)

[^0]
Advanced problems

Question 12. Consider the affine elliptic curve with equation $y^{2}-x^{3}+x \in \mathbb{C}[x, y]$ and its associated affine coordinate ring $S:=\mathbb{C}[x, y] /\left(y^{2}-x^{3}+x\right)$.
(1) Let a be a complex number. Prove that if $a \notin\{-1,0,1\}$, then $S /(x-a) S$ has exactly two prime ideals, whose lifts $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ to S satisfy $(x-a) S=\mathfrak{p}_{1} \mathfrak{p}_{2}$ (the "completely split" case), and that if $a \in\{-1,0,1\}$, then $S /(x-a) S$ has a unique prime ideal \mathfrak{p} and $(x-a) S=\mathfrak{p}^{2}$ (the "ramified" case).
(2) Show that every nonzero prime ideal of S is of the form $(x-a, y-b)$ for some complex numbers a and b. (Hint: Show that the intersection of a nonzero prime ideal of S with $\mathbb{C}[x]$ is a nonzero prime ideal of $\mathbb{C}[x]$, and hence of the form $(x-a)$ for some complex number a.)
Question 13. Let p be a prime number, and let $K=\mathbb{Q}\left(\zeta_{p}\right)$, where $\zeta=\zeta_{p}$ is a primitive p th root of unity. In this problem, we want to compute the ring of integers \mathscr{O}_{K}. First, recall from Question 2 that $\mathbb{Z}\left[\zeta_{p}\right]$ has discriminant \pm (power of p). Recall also from lecture that

$$
\Delta\left(\zeta_{p}\right)=\left[\mathscr{O}_{K}: \mathbb{Z}\left[\zeta_{p}\right]\right]^{2} \Delta_{K} .
$$

(1) Deduce that the index of $\mathbb{Z}\left[\zeta_{p}\right]$ in \mathscr{O}_{K} is a power of p. Suppose that $\left(p \mathscr{O}_{K} \cap \mathbb{Z}\left[\zeta_{p}\right]\right)=p \mathbb{Z}\left[\zeta_{p}\right]$. Use this to show that $\mathscr{O}_{K}=\mathbb{Z}\left[\zeta_{p}\right]$.
(2) Note that the minimal polynomial of $\zeta-1$ is

$$
f(x)=\varphi_{p}(x+1)=\frac{(x+1)^{p}-1}{x} .
$$

Show that $f(x)$ is p-Eisenstein ${ }^{4}$. Use this to show that $(\zeta-1)^{p-1} \mid p$ in $\mathbb{Z}[\zeta]$.
(3) Show that $\left(p \mathscr{O}_{K} \cap \mathbb{Z}\left[\zeta_{p}\right]\right)=p \mathbb{Z}\left[\zeta_{p}\right]$ (Hint: $\mathbb{Z}[\zeta]=\mathbb{Z}[\zeta-1]$, so any $x \in p \mathscr{O}_{K} \cap \mathbb{Z}\left[\zeta_{p}\right]$ can be written as

$$
x=c_{0}+c_{1}(\zeta-1)+\cdots+c_{d}(\zeta-1)^{d}
$$

where $d=[K: \mathbb{Q}]-1=p-2$ and $c_{i} \in \mathbb{Z}$. Inductively show that $\left.p \mid c_{i}\right)$.
Question 14. Show that the ring $\mathbb{Z}[\sqrt{-2}]$ is a UFD (Hint: it suffices to show that it is a Euclidean domain).

References

[Wal00] Michel Waldschmidt, Diophantine approximation on linear algebraic groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 326, Springer-Verlag, Berlin, 2000. Transcendence properties of the exponential function in several variables. MR1756786 \uparrow

[^1]
[^0]: ${ }^{1}$ You should find that the only integer solutions to $y^{2}=x^{3}-2$ are $(x, y)=(3, \pm 5)$
 ${ }^{2}$ See sections 14.6 and 14.7 of Dummit and Foote for explicit solutions to cubic and quartic polynomials over \mathbb{Q} by radicals. The explicit forms of the solutions can be used to give an alternate proof for the problem above.
 ${ }^{3}$ This is one of the extensions that shows up when you try to write down a primitive 7 -th root of unity explicitly in terms of radicals.

[^1]: ${ }^{4}$ i.e. $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ where $p \nmid a_{0}, p^{2} \nmid a_{n}$, but $p \mid a_{i}$ for all $i>0$ (including $i=n$)

