
HEIGHTS PROBLEM SET 3

Below you will find some problems to work on for Week 3! There are three categories: beginner, inter-
mediate and advanced.

Beginner problems

Question 1. Prove that for every algebraic number α, there is a nonzero integer m P Z such that mα is
an algebraic integer.

Question 2.

(1) If α is an algebraic integer with minimal polynomial f of degree n, prove that the discriminant
of the power basis generated by α is precisely the discriminant of the polynomial f , and we have

∆pαq :“ ∆p1, α, . . . , αn´1q “ p´1qpn2q
śn

i“1 f
1pαiq. In particular, if fpxq “ x2 ` ax ` b, then

the corresponding discriminant is b2 ´ 4a and if fpxq “ x3 ` ax ` b, then the corresponding
discriminant is ´4a3 ´ 27b2.

(2) Let p be a prime and let φp be the p-th cyclotomic polynomial. That is

φppxq “
xp ´ 1

x ´ 1
“ xp´1 ` xp´2 ` ¨ ¨ ¨ ` x ` 1.

Show that the discriminant of the power basis generated by a primitive p-th root of unity ζp is

p´1qpp´1
2 qpp´2. (Hint: Use the equality φppxqpx´1q “ xp´1 and the product rule of differentiation

to simplify φ1
ppζpq.)

Question 3. Verify that 2, 3, 1 `
?

´5, 1 ´
?

´5 are four mutually non-associate irreducible elements in
the ring Zr

?
´5s that are not prime.

Question 4. Let K{Q be a degree n number field.

(1) Prove that if I is a nonzero ideal of OK , then there is a nonzero integer m in I X Z.
(2) Show that every nonzero ideal I is a sublattice of OK of maximal rank, i.e. I has finite index in

OK , and is isomorphic to Zn as an abelian group.

Question 5. Let K “ Qp
?

´23q.

(a) Find OK .
(b) Prove that the norm map N : K Ñ Q taking α Ñ ασpαq, where σ is complex conjugation, takes

values in Z when restricted to OK .
(c) Show that 2 is irreducible in OK but not prime. Conclude that OK is not a UFD.

Question 6. Verify that
?
2` 1 is a unit in the ring Zr

?
2s. Use the Minkowski embedding to show that?

2 ` 1 has infinite order in the group of units of Zr
?
2s.

Intermediate problems

Question 7. Consider the elliptic curve E : y2 “ x3 ´ 2. In this exercise, we will find all integer points
on this curve. Fix any x, y P Z satisfying y2 “ x3 ´ 2.

(1) Show that y is odd.
(2) Note that if we work in the ring Zr

?
´2s, then we can write

py `
?

´2qpy ´
?

´2q “ x3.

Take for granted the fact that Zr
?

´2s is a UFD (see Question 14), and show that y `
?

´2 and
y ´

?
´2 are coprime.
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(3) Show that there must exist some unit u P Zr
?

´2sˆ and some α P Zr
?

´2s so that

y `
?

´2 “ uα3.

(4) Show that we can always take u “ 1 above (Hint: if α P Zr
?

´2s Ă C, its complex norm |α| is an
integer. Use this to compute Zr

?
´2sˆ.)

(5) At this point, y `
?

´2 must be a cube in Zr
?

´2s. Directly compute all (finitely many) possible
values of y, and then use this to find all integral points of E (See footnote for the end result1).

Question 8. LetK “ Qp
?
7,

?
´2q. Enlarge the finite index subgroup ofOK spanned by 1,

?
7,

?
´2,

?
´14

to a Z-basis for OK .

Question 9. Let K be a number field of degree n and β1, . . . , βn be Q-linearly independent algebraic
integers in K. Show that the lattice Λ spanned by the images of the βi has rank n in Rn and that the
fundamental domain of Λ has volume 2´s

a

|∆pβ1, β2, . . . , βnq|, where s is the number of pairs of complex
embeddings of K.

Problems 10 and 11 involve working with Galois extensions. Recall that a Galois extension K{F is a field
extension F Ď K such that

(1) the extension is finite: the dimension of K as a vector space over F , denoted by rK : F s, is finite.
(2) the extension is algebraic: for every α P K, there is a nonzero polynomial with coefficients in F

such that α is a root of this polynomial;
(3) the extension is normal : Every polynomial in F rxs that has a root in K has all roots in K;
(4) the extension is separable: For every α P K, its minimal polynomial is separable (does not have

repeated roots).

Equivalently, an extensionK{F is Galois if and only ifK is the splitting field of some separable polynomial
over F . If K{F is Galois, then we define GalpK{F q, the Galois group of K{F , to be the group AutpK{F q.
This is, GalpK{F q is the group of field automorphisms of K that fix F .

Question 10.
Consider the natural action of Sn on Zrx1, x2, . . . , xns, namely the permutation action on the indices of
the variables. Let rD “

ś

iăjpxi ´ xjq P Zrx1, x2, . . . , xns and let D “ r2D.

(1) Let σ P Sn. Show that σpDq “ D for all σ P Sn and that σprDq “ rD if and only if σ P An.
(2) Now let p be an irreducible cubic polynomial in Qrxs. Let E be the splitting field of p over Q, let

α1, α2, α3 be the roots of p in E and let G :“ GalpE{Qq. Show that G is either A3 or S3.
(3) Let G be as above. show that G “ A3 if and only if rDpα1, α2, α3q P Q. (In other words, the

discriminant of the polynomial p is a square in Q if and only if the splitting field of p is a cubic
Galois A3 extension.) 2

Question 11.

(1) Let ppxq “ x3 ´ 21x ´ 7. Show that p is an irreducible polynomial in Zrxs. (Caution: Remember
that there is one extra step in going from being irreducible in Qrxs to being irreducible in Zrxs).
Graph the polynomial p and show that all its roots are real.

(2) Compute the discriminant of the polynomial p and show that the splitting field of p is a cubic
Galois A3 extension of Q. 3 (Hint: use Question 10).

(3) Show that if the splitting field of an irreducible cubic polynomial over Q is an A3 extension, then
all the roots of the cubic in C are real. (Remark: The converse is not necessarily true, but an
explicit example does not come to mind. Let me know if you find one!)

1You should find that the only integer solutions to y2
“ x3

´ 2 are px, yq “ p3,˘5q
2See sections 14.6 and 14.7 of Dummit and Foote for explicit solutions to cubic and quartic polynomials over Q by radicals.

The explicit forms of the solutions can be used to give an alternate proof for the problem above.
3This is one of the extensions that shows up when you try to write down a primitive 7-th root of unity explicitly in terms

of radicals.
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Advanced problems

Question 12. Consider the affine elliptic curve with equation y2 ´ x3 ` x P Crx, ys and its associated
affine coordinate ring S :“ Crx, ys{py2 ´ x3 ` xq.

(1) Let a be a complex number. Prove that if a R t´1, 0, 1u, then S{px ´ aqS has exactly two prime
ideals, whose lifts p1, p2 to S satisfy px ´ aqS “ p1p2 (the ”completely split” case), and that if
a P t´1, 0, 1u, then S{px´aqS has a unique prime ideal p and px´aqS “ p2 (the ”ramified” case).

(2) Show that every nonzero prime ideal of S is of the form px ´ a, y ´ bq for some complex numbers
a and b. (Hint: Show that the intersection of a nonzero prime ideal of S with Crxs is a nonzero
prime ideal of Crxs, and hence of the form px ´ aq for some complex number a.)

Question 13. Let p be a prime number, and let K “ Qpζpq, where ζ “ ζp is a primitive pth root of
unity. In this problem, we want to compute the ring of integers OK . First, recall from Question 2 that
Zrζps has discriminant ˘ppower of pq. Recall also from lecture that

∆pζpq “ rOK : Zrζpss2∆K .

(1) Deduce that the index of Zrζps in OK is a power of p. Suppose that ppOK XZrζpsq “ pZrζps. Use
this to show that OK “ Zrζps.

(2) Note that the minimal polynomial of ζ ´ 1 is

fpxq “ φppx ` 1q “
px ` 1qp ´ 1

x
.

Show that fpxq is p-Eisenstein4. Use this to show that pζ ´ 1qp´1 | p in Zrζs.
(3) Show that ppOK XZrζpsq “ pZrζps (Hint: Zrζs “ Zrζ ´ 1s, so any x P pOK XZrζps can be written

as
x “ c0 ` c1pζ ´ 1q ` ¨ ¨ ¨ ` cdpζ ´ 1qd

where d “ rK : Qs ´ 1 “ p ´ 2 and ci P Z. Inductively show that p | ci).

Question 14. Show that the ring Zr
?

´2s is a UFD (Hint: it suffices to show that it is a Euclidean
domain).

References

[Wal00] Michel Waldschmidt, Diophantine approximation on linear algebraic groups, Grundlehren der mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], vol. 326, Springer-Verlag, Berlin, 2000. Transcen-
dence properties of the exponential function in several variables. MR1756786 Ò

4i.e. fpxq “ a0x
n

` a1x
n´1

` ¨ ¨ ¨ ` an where p ∤ a0, p
2 ∤ an, but p | ai for all i ą 0 (including i “ n)
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