HEIGHTS PROBLEM SET 4

Below you will find some problems to work on for Week 4! There are three categories: beginner, intermediate and advanced.

Beginner problems

Question 1. Let $K=\mathbb{Q}(\alpha)$ be a number field. Let f be the minimal polynomial of α, and let p be a prime that does not divide the index $\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]$. Suppose f factors as

$$
f(x) \equiv f_{1}(x)^{e_{1}} \ldots f_{r}(x)^{e_{r}} \quad \bmod p
$$

where $f_{i}(x) \in \mathbb{Z}[x]$ such that $f_{i}(x) \bmod p$ are pairwise distinct irreducible polynomials in $\mathbb{F}_{p}[x]$. Let $\mathfrak{p}_{i}:=\left(p, f_{i}(\alpha)\right)$ for each i. Verify that \mathfrak{p}_{i} is a prime ideal.

Question 2. Let K be a number field and \mathcal{O}_{K} be its ring of integers.
(1) Show that if I is a nonzero ideal of \mathcal{O}_{K}, then $I \cap \mathbb{Z}$ is a nonzero ideal of \mathbb{Z}. Use this to show that I has finite index in \mathcal{O}_{K}.
(2) Show that if \mathfrak{p} is a prime ideal of \mathcal{O}_{K}, then $\mathfrak{p} \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z}.
(3) Prove that every finite integral domain is a field. (Hint: To prove that a nonzero element α has a multiplicative inverse, consider the set $\left.\left\{\alpha, \alpha^{2}, \ldots\right\}.\right)$
(4) Combine the previous three parts to show that if \mathfrak{p} is a nonzero prime ideal of \mathcal{O}_{K}, then \mathfrak{p} is in fact a maximal ideal. If p is a generator for the ideal $\mathfrak{p} \cap \mathbb{Z}$, then $\mathcal{O}_{K} / \mathfrak{p}$ is a finite extension of the finite field \mathbb{F}_{p}.

Question 3. Let K be a number field and let p be a prime number that does not divide the index $\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]$. If \mathfrak{p}_{i} is the prime ideal associated to the irreducible polynomial $f_{i}(x)$ appearing in the factorization of f modulo p, show that the inertial degree of \mathfrak{p}_{i} is the degree of the polynomial f_{i}.
Question 4. Let $K=\mathbb{Q}(\sqrt{-1})$. Compute the relative height H_{K} of $P:=[5,6]$. Use this to compute $H(P)$.

Intermediate problems

Question 5. Let \mathfrak{p} be a prime ideal of \mathcal{O}_{K}, where K is a number field.
(1) Show that $\mathfrak{p}^{i} \neq \mathfrak{p}^{i+1}$ for any integer i.
(2) Let $\alpha \in \mathfrak{p}^{i} \backslash \mathfrak{p}^{i+1}$. Show that the map of \mathcal{O}_{K}-modules $\mathcal{O}_{K} / \mathfrak{p} \rightarrow \mathfrak{p}^{i} / \mathfrak{p}^{i+1}$ induced by sending 1 to α is an isomorphism.
(3) Verify that the dimension of $\mathcal{O}_{K} / \mathfrak{p}^{r}$ as a \mathbb{F}_{p} vector space is $r f(\mathfrak{p} \mid p)$.

Question 6. Assume that K is a number field.
(1) Show that every ideal of \mathcal{O}_{K} is generated by at most two elements.
(2) Show that \mathcal{O}_{K} is a PID if and only if it is a UFD.

Question 7. Prove that if $\alpha \in K$ for a number field K, then $H(\alpha)=H([\alpha: 1])$.
Question 8. Let K / \mathbb{Q} be a finite Galois extension. Show that if $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ and $P=\left[x_{0}, \ldots, x_{n}\right] \in$ $\mathbb{P}^{n}(K)$. Then,

$$
H_{K}(\sigma(P))=H_{K}(P)
$$

where $\sigma(P)=\left[\sigma\left(x_{0}\right), \ldots, \sigma\left(x_{n}\right)\right]$.

Question 9. Show that the two different embeddings $K:=\mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{R}$ induce different topologies on K. (Hint: Can you construct a sequence of elements of K that converges to 0 in one topology but does not converge in the other?)

Advanced problems

Question 10. (Generalized Liouville's inequality). Let L / K be an extension of number fields and S be a finite set of primes in \mathcal{O}_{L}. Let α, β be elements of L with $\alpha \neq \beta$.
(a) Show that $H(\alpha-\beta) \leqslant 2 H(\alpha) H(\beta)$.
(b) Show that $\prod_{\mathfrak{p} \in S}|\alpha|_{\mathfrak{P}} \leqslant H(\alpha)$.
(c) Show that

$$
(2 H(\alpha) H(\beta))^{-1} \geqslant \prod_{\mathfrak{p} \in S}|\alpha-\beta|_{\mathfrak{F}} \leqslant 2 H(\alpha) H(\beta) .
$$

[Hint: For the lower bound use that $H(\gamma)=H(1 / \gamma)$ for any $\gamma \in \bar{Q}$.]
Question 11. Prove that if $P \in \mathbb{P}^{n}(K)$ with homogeneous coordinates $\left[x_{0}: x_{1}: \ldots: x_{n}\right]$, where $x_{i} \in K$ for $i \in\{0, \ldots, n\}$ and one of the coordinates is equal to 1 , then

$$
H(P) \geqslant\left(\prod_{i=0}^{n} H\left(x_{i}\right)\right)^{1 / n}
$$

Question 12. Prove the product formula for number fields: for $x \in K^{*}$ we have

$$
\left(\prod_{\mathfrak{p} \in \operatorname{MSpec}\left(\mathcal{O}_{K}\right)}|x|_{\mathfrak{p}}\right)\left(\prod_{i=1}^{r}\left|\sigma_{i}(x)\right|_{\mathbb{R}}\right)\left(\prod_{j=1}^{s}\left|\tau_{j}(x)\right|_{\mathbb{C}}^{2}\right)=1
$$

(Hint: Let $x \in \mathcal{O}_{K} \backslash\{0\}$. Compute the size of $\mathcal{O}_{K} / x \mathcal{O}_{K}$ in two ways: (1) Show that it equals the product of the terms coming from the Archimedean places. (2) Show that if $x \mathcal{O}_{K}=\mathfrak{p}_{1}^{e_{1}} \ldots \mathfrak{p}_{r}^{e_{r}}$ and $\mathfrak{p}_{i} \cap \mathbb{Z}=p_{i} \mathbb{Z}$ with $p_{i}>0$, then $\left.\# \mathcal{O}_{K} / x \mathcal{O}_{K}=\prod p_{i}^{e_{i} f_{i}}\right)$. This is analogous to the proof of the product formula over \mathbb{Q}.

