HEIGHTS PROBLEM SET 6

Below you will find some problems to work on for Week 6! There are three categories: beginner, intermediate and advanced.

Beginner problems

Question 1. Let $y^{2}=x^{3}+A x+B$ be the defining equation for an elliptic curve E, where A, B are constants in K such that $4 A^{3}+27 B^{2} \neq 0$. Assume that P and Q are points on E such that $x(P)=\left[x_{1}: 1\right], x(Q)=\left[x_{2}: 1\right], x(P+Q)=\left[x_{3}: 1\right]$ and $x(P-Q)=\left[x_{4}: 1\right]$ (where $x_{i}=\infty$ if the corresponding point is infinity on $\left.\mathbb{P}^{1}\right)$. Show that the following identities hold.
(a) $x_{3}+x_{4}=\frac{2\left(x_{1}+x_{2}\right)\left(A+x_{1} x_{2}\right)+4 B}{\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}}$.
(b) $x_{3} x_{4}=\frac{\left(x_{1} x_{2}-A\right)^{2}-4 B\left(x_{1}+x_{2}\right)}{\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}}$.

Question 2. Let A and B be elements of K such that $4 A^{3}+27 B^{2} \neq 0$. Let g_{0}, g_{1}, g_{2} in $K[t, u, v]$ be defined as follows:

$$
\begin{aligned}
g_{0}(t, u, v) & :=u^{2}-4 t v, \\
g_{1}(t, u, v) & :=2 u(A t+v)+4 B t^{2}, \\
g_{2}(t, u, v) & :=(v-A t)^{2}-4 B t u .
\end{aligned}
$$

(a) Show that if $t=0$, then $u=v=0$.
(b) Assume $t \neq 0$. Define $z:=u / 2 t$. Using $g_{0}=0$, show that $z^{2}=v / t$.
(c) Define $\psi(z):=4 z\left(A+z^{2}\right)+4 B$ and $\varphi(z):=\left(z^{2}-A\right)^{2}-8 B z$. Show that $g_{1}(t, u, v)=t^{2} \psi(z)$ and $g_{2}(t, u, v)=t^{2} \varphi(z)$.
(d) Verify that $\left(12 z^{2}+16 A\right) \varphi(z)-\left(3 z^{3}-5 A z-27 B\right) \psi(z)=4\left(4 A^{3}+27 B^{2}\right)$.
(e) Conclude that ψ and φ cannot simultaneously vanish, and hence g_{0}, g_{1}, g_{2} have no common zero with $t \neq 0$.
Conclude that if (t, u, v) is a common zero of g_{0}, g_{1} and g_{2}, then $t=u=v=0$.
Question 3. Consider the degree 2 rational map

$$
\left.\begin{array}{ccc}
F: & \mathbb{P}^{2} & \longrightarrow
\end{array} \begin{array}{c}
\mathbb{P}^{2} \\
{[x, y, z]}
\end{array}\right) \longmapsto\left[x^{2}, x y, z^{2}\right] .
$$

Note that F above is not a morphism, so Question 6 does not apply to it. Show in fact there are infinitely many points $P \in \mathbb{P}^{2}(\mathbb{Q})$ such that $h(F(P))=h(P)$.
Question 4. Let K be a number field, and let E / K be an elliptic curve with canonical height \hat{h}_{E} : $E(\overline{\mathbb{Q}}) \rightarrow \mathbb{R}$. Consider the pairing

$$
\langle P, Q\rangle:=\frac{1}{2}\left[\widehat{h}_{E}(P+Q)-\widehat{h}_{E}(P)-\widehat{h}_{E}(Q)\right]
$$

on $E(\overline{\mathbb{Q}}) \times E(\overline{\mathbb{Q}})$.
(1) Show that $\langle P, Q\rangle$ is symmetric, bilinear, and satisfies $\langle P, P\rangle=\widehat{h}_{E}(P)$. The is sometimes called the height pairing on E.

Hint: first show that \hat{h}_{E} satisfies an exact parallelogram law.
(2) If you know about tensor products, then show that $\langle-,-\rangle$ extends to a positive definite inner product on the real vector space $E(\overline{\mathbb{Q}}) \otimes_{\mathbb{Z}} \mathbb{R}$.

We will see an application of (a generalization of this) in Question 7 .

Intermediate problems

Question 5. In the lecture, Hilbert's Nullstellensatz was used. The most common version of this theorem is given as follows. Let k be an algebraically closed field and consider an ideal $J \subseteq k\left[X_{0}, \ldots, X_{n}\right]$. Define

$$
V(J):=\left\{x \in k^{n+1}: f(x)=0 \text { for all } f \in J\right\} .
$$

The Hilbert Nullstellensatz states that if $f \in k\left[X_{0}, \ldots, X_{n}\right]$ is a polynomial such that $f(x)=0$ for all $x \in V(J)$, then there must be $e \in \mathbb{Z}_{\geqslant 0}$ such that $f^{e} \in J$.
Suppose $F: \mathbb{P}^{N} \rightarrow \mathbb{P}^{M}$ is a morphism of degree d over a number field K, i.e.

$$
F(P)=\left[f_{0}(P): \ldots: f_{M}(P)\right],
$$

where the f_{i} are homogeneous polynomials of degree d in $N+1$ variables with coefficients in K. Assume that the f_{i} have no common zeros in $\overline{\mathbb{Q}}^{N+1} \backslash(0,0, \ldots, 0)$. Use Hilbert's Nullstellensatz to show that if $\left[X_{0}, \ldots, X_{N}\right]$ are coordinates for \mathbb{P}^{N}, then there is an exponent $e \in \mathbb{Z}_{\geqslant 0}$ and there are polynomials $g_{i j} \in K\left[x_{0}, \ldots, x_{N}\right]$ for $i \in\{0, \ldots, N\}$ and $j \in\{0, \ldots, M\}$ such that for every $i \in\{0, \ldots, N\}$, we have

$$
x_{i}^{e}=\sum_{j=0}^{M} g_{i j} f_{j} .
$$

Definition 1. For K a number field, v a place of K, and $g \in K\left[x_{0}, \ldots, x_{n}\right]$ a polynomial, we let $|g|_{v}$ denote the maximal absolute value of any of its coefficients, i.e. if $g=\sum_{I} a_{I} x^{I}$ with I ranging over all multi-indices $\left(c_{0}, \ldots, c_{n}\right) \in \mathbb{Z}_{\geqslant 0}^{n+1}$ with $c_{0}+\cdots+c_{n} \leqslant \operatorname{deg} g \rrbracket^{\cap}$ then $|g|_{v}=\max _{I}\left|a_{I}\right|_{v}$.
Question 6. In lecture, we saw that for a morphism $F=\left[f_{0}, \ldots, f_{M}\right]: \mathbb{P}^{N} \rightarrow \mathbb{P}^{M}$ of degree d over a number field K, one has

$$
h(F(P))=d h(P)+O(1)
$$

if the polynomials $f_{i} \in K\left[x_{0}, \ldots, x_{N}\right]$ have no common zero other than $\left(x_{0}, \ldots, x_{N}\right)=(0, \ldots, 0)$. In this exercise, we ask you to go over the steps of this proof, and fill in any details missing from lecture.
(1) Let $g \in K\left[x_{0}, \ldots, x_{N}\right]$ be homogeneous of degree d, and let v be a place of K. If v is archimedean, show that

$$
|g(P)|_{v} \leqslant\binom{ N+d}{d}|g|_{v} \max _{0 \leqslant i \leqslant N}\left|x_{i}\right|_{v}^{d} \text { for all } P=\left[x_{0}, \ldots, x_{N}\right] \in \mathbb{P}^{N}(\overline{\mathbb{Q}})
$$

If v is non-archimedean, show that

$$
|g(P)|_{v} \leqslant|g|_{v} \max _{0 \leqslant i \leqslant N}\left|x_{i}\right|_{v}^{d} \text { for all } P=\left[x_{0}, \ldots, x_{N}\right] \in \mathbb{P}^{N}(\overline{\mathbb{Q}})
$$

Use this to conclude that

$$
h(F(P)) \leqslant d h(P)+C_{2} \text { for all } P=\left[x_{0}, \ldots, x_{N}\right] \in \mathbb{P}^{N}(\overline{\mathbb{Q}}),
$$

where $C_{2}=[K: \mathbb{Q}] \log \binom{N+d}{d}+h(F)$, where $|F|_{v}:=\max _{0 \leqslant j \leqslant M}\left|f_{j}\right|_{v}$ and $h(F):=\sum_{v} \log |F|_{v}{ }^{2}$
(2) Hilbert's Nullstellsatz (See Question 5) guarantees the existence of an exponent e and polynomials $g_{i j} \in K\left[x_{0}, \ldots, x_{N}\right]$ such that for every $i \in\{0, \ldots, N\}$, we have

$$
x_{i}^{e}=\sum_{j=0}^{M} g_{i j} f_{j} .
$$

[^0]For a place v, let $|G|_{v}:=\max _{i, j}\left|g_{i j}\right|_{v}$. To avoid breaking into archimedean and non-archimedean cases, we now introduce

$$
\varepsilon_{v}:= \begin{cases}1 & \text { if } v \text { archimedean } \\ 0 & \text { otherwise }\end{cases}
$$

To ease notation even further, for a point $P=\left[x_{0}, \ldots, x_{N}\right]$ in projective space, we define $|P|_{v}:=$ $\max _{0 \leqslant i \leqslant N}\left|x_{i}\right|_{v}$. Now, arguing as in (1), show that

$$
|P|_{v}^{e} \leqslant(M+1)^{\varepsilon_{v}}\left(\max _{i, j}\left|g_{i j}(P)\right|_{v}\right)|F(P)|_{v} \leqslant C^{\prime}|F(P)|_{v}|P|_{v}^{e-d} \text { for any } P \in \mathbb{P}^{N}(\overline{\mathbb{Q}}),
$$

where $C^{\prime}:=(M+1)^{\varepsilon_{v}}(\underset{N}{N+e-d})^{\varepsilon_{v}}|G|_{v}$. Use this to conclude that

$$
d h(P)+C_{1} \leqslant h(F(P)) \text { for all } P \in \mathbb{P}^{N}(\overline{\mathbb{Q}}),
$$

where $C_{1}=[K: \mathbb{Q}]\left(\log (M+1)+\log \binom{N+e-d}{N}\right)+h(G)$, where $h(G):=\sum_{v} \log |G|_{v}$.

Advanced problems

Question 7. This question will assume some familiarity with algebraic curves and their jacobians. In addition to the Mordell-Weil Theorem (that the group of rational points on an elliptic curve is finitely generated), another celebrated application of heights is in Vojta's proof of the Mordell Conjectur ${ }^{3}$. This conjecture states that any curve of genus $g \geqslant 2$ defined over a number field K has finitely many K-points. After assuming some hard facts about heights on curves and their jacobians, we will ask you to prove this statement.
Let K be a number field, let C / K be a curve of genus $g \geqslant 2$, and let $J=\operatorname{Jac}(C)$ be its jacobian. Assume that $C(K) \neq \varnothing$, so we may define an Abel-Jacobi embedding $j: C \hookrightarrow J$. We take for granted the following facts.
(1) There exists a height function $\hat{h}: J(\overline{\mathbb{Q}}) \rightarrow \mathbb{R}$ which satisfies both the Northcott property and that $\widehat{h}(m x)=m^{2} \widehat{h}(x)$ for any $m \in \mathbb{Z}$ and $\left.x \in J(\overline{\mathbb{Q}})\right|^{4}$ In particular, the points of height 0 are exactly the torsion points of J. Furthermore, the map $\langle-,-\rangle: J(\overline{\mathbb{Q}}) \times J(\overline{\mathbb{Q}}) \rightarrow \mathbb{R}$ defined by

$$
\langle x, y\rangle:=\frac{1}{2}[\widehat{h}(x+y)-\hat{h}(x)-\widehat{h}(y)]
$$

is a symmetric, bilinear pairing satisfying $\langle x, x\rangle=\widehat{h}(x)$. Inspired by this, we introduce the notation

$$
\|x\|:=\sqrt{\langle x, x\rangle}=\sqrt{\hat{h}(x)}
$$

for $x \in J(\overline{\mathbb{Q}})$.
(2) The group $J(K) \subset J(\overline{\mathbb{Q}})$ of K-points on the jacobian is finitely generated, and the pairing $\langle-,-\rangle$ considered above gives a positive definite inner product on the finite dimensional vector space $V:=J(K) \otimes_{\mathbb{Z}} \mathbb{R}$.

[^1] J. The function \hat{h} alluded to here is a canonical version of the height function associated to the divisor $\Theta+[-1]^{*} \Theta$, where $[-1]: J \rightarrow J$ is negation in J 's group law.
(3) For any $\varepsilon>0$, there exists constants $B>0$ and $\kappa \geqslant 1$ such that for any distinct $P, Q \in C(\overline{\mathbb{Q}})$ satisfying both ${ }^{5}$
$$
\|j(P)\| \geqslant\|j(Q)\|>B \text { and } \frac{\langle j(P), j(Q)\rangle}{\|j(P)\|\|j(Q)\|} \geqslant \frac{3}{4}+\varepsilon
$$
one has
$$
\|j(P)\| \leqslant \kappa\|j(Q)\| .
$$

This is called Vojta's inequality.
Use the above 3 facts in order to prove that $C(K)$ is finite. Hint: look at the image of $C(K)$ in V, and split V into (finitely many!) cones s.t. any two points in a given cone have a small angle between them.

[^2]
[^0]: ${ }^{1}$ Here, $x^{I}:=x_{0}^{c_{0}} x_{1}^{c_{1}} \ldots x_{n}^{c_{n}}$ and $a_{I} \in K$ is just some choice of coefficient associated with I.
 ${ }^{2}$ This $h(F)$ is the height of the projective point whose coordinates are given by the collection of coefficients of the f_{j} 's

[^1]: ${ }^{3}$ This conjecture was originally proved by Faltings.
 ${ }^{4}$ For those more familiar with the Weil height machinery, on J, there is a so-called theta divisor $\Theta:=\underbrace{j(C)+\cdots+j(C)}_{(g-1) \text { summands }} \subset$

[^2]: ${ }^{5}$ The constant $3 / 4$ appearing below can actually be replaced with \sqrt{g} / g. For an elliptic curve, we have $g=1$, and so the statement of Vojta's inequality would be useless in that case. This is good because there exists elliptic curves with infinitely many rational points.

