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Abelian varieties are important objects in arithmetic geometry. When studying their
rational points, we can make use of the fact that they are group varieties. That is, the ra-
tional points over a fixed field form a group, which provides us with useful extra structure.
In this course, we will consider abelian varieties over fields of positieve characteristic p,
and study geometric and arithmetic properties of their moduli spaces.

Abelian varieties over finite fields have been intensively studied, both for their inherent
theoretical interest and for their applications in cryptography and coding theory. Let Fq

be a finite field of characteristic p, so q = pr for some r. Every abelian variety A over Fq

admits a (relative) Frobenius endomorphism, often denoted π. It also acts on the ℓn-
torsion of A, denoted A[ℓn], for any ℓ ̸= p and n ≥ 1, and hence on its Tate module
Tℓ(A) = lim←−n

A[ℓn] and on Vℓ(A) = Tℓ(A)⊗Zℓ
Qℓ; as such it has a characteristic polyno-

mial, which turns out to be independent of ℓ(̸= p) and is a so-called Weil polynomial.

The characteristic polynomial of π captures a lot of arithmetic information about A.
For example, by a theorem of Tate [29, Theorem 1], it determines the isogeny class of A;
two abelian varieties A1, A2 are isogenous if there exists a surjective morphism between
them with finite kernel. Isogeny is an equivalence relation. It is a weaker notion than
isomorphism; indeed, a lot of current research is concerned with determining which and
how many isomorphism classes a given isogeny class contains.

For any n ≥ 1, we may also consider the pn-torsion A[pn]. The direct limit A[p∞] =
lim−→n

Apn of the corresponding finite group schemes is the p-divisible group of A. While for

any ℓ ̸= p the Tate module satisfies Tℓ(A) ≃ Z2g
ℓ where g = dim(A), the p-divisible group

is much more mysterious. There is however a useful anti-equivalence between p-divisible
groups and so-called Dieudonné modules which we will also make use of in this course.

The p-torsion in characteristic p is also used for the following important classification:
An elliptic curve E that has trivial p-torsion is called supersingular ; otherwise it is called
ordinary. A higher-dimensional abelian variety is supersingular if it is geometrically (i.e.
over Fp) isogenous to a product of supersingular elliptic curves; it is superspecial if it is
geometrically isomorphic to such a product. The p-rank of A/Fq, denoted f(A), is the
integer such that |A[p]| = pf . Thus 0 ≤ f(A) ≤ g = dim(A) and supersingular abelian
varieties have p-rank zero, but the converse of the latter only holds for g ≤ 2. When
f(A) = g, the variety is said to be ordinary.

Let k = Fp. We will consider the moduli spaceAg of principally polarised g-dimensional
abelian varieties over k. The locus of supersingular abelian varieties is denoted Sg. It is
of interest to study stratifications of these spaces, and especially to determine the number
and (co)dimension of the strata.
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We will introduce several stratifications, each determined by an invariant of the vari-
eties, in the sense that each stratum consists of all varieties with the same value for that
invariant:

• The p-rank stratification, where the p-rank is as defined above.
• The Newton (polygon) stratification: the geometric isogeny class of the p-divisible
group A[p∞] uniquely determines a Newton polygon. Importantly, all supersingu-
lar abelian varieties have isogenous p-divisible groups, so Sg is a Newton stratum.
Since the p-rank is also the number of zero slopes in the Newton polygon, the
Newton stratification refines the p-rank stratification.
• The a-number stratification: the a-number a(A) := dim(Hom(αp, A)) is an iso-
morphism invariant of A[p]; here αp is a local finite additive group scheme. If A
has dimension g and p-rank f , then 0 ≤ a(A) ≤ g − f . The a-number is g if and
only if A is superspecial [24].
• The Ekedahl-Oort stratification: we can combinatorially describe A[p] in terms of
symplectic group elements, or equivalently using so-called elementary sequences;
this again yields an isomorphism invariant [27]. The corresponding stratification
refines both the p-rank and a-number stratifications.

In the second half of this course, we will focus our attention on Sg and discuss for in-
stance what happens when we restrict the stratifications mentioned above to Sg. We will
introduce a very explicit geometric description of Sg due to Li and Oort [17], in terms of
so-called flag type quotients. These in particular yield a useful description of the minimal
isogeny to our supersingular abelian variety from some superspecial abelian variety.

Another geometric structure is provided by central leaves. The central leaf through a
moduli point x0 ∈ Ag corresponding to a principally polarised abelian variety A0 is

(1) C(x0) := {A = x ∈ Ag : A[p
∞] ≃ A0[p

∞]}.
Every irreducible component of a Newton stratum, such as Sg, is foliated by central
leaves [28]. We will consider this structure particularly for Sg, because central leaves
have finite cardinality only for supersingular abelian varieties [1].

Finally, we turn towards arithmetic questions, still focussing on Sg. Two important
arithmetic invariants of algebraic varieties in general are their endomorphism ring (and
algebra) and automorphism group. For example, over Fq the endomorphism ring of an or-
dinary elliptic curve is a commutative order in an imaginary quadratic number field, while
that of a supersingular elliptic curve can be an order in a non-commutative quaternion
algebra. For abelian varieties over finite fields, the characteristic polynomial of Frobenius
again gives us a lot of information about the endomorphism ring and algebra. And a
theorem by Tate [29, Main Theorem] shows that the localisation of the endomorphism
ring of a variety A at a prime ℓ ̸= p is isomorphic to the endomorphism ring of the Tate
module Tℓ(A).

Working over k = Fp, we use automorphism groups to define the notion of mass. For
a moduli point x0 ∈ Sg, its mass is defined as

(2) Mass(x0) :=
∑

A=x∈C(x0)

1

|Aut(A)|
.

We will discuss formulae for masses of supersingular and superspecial abelian varieties,
explaining how minimal isogenies are crucial tools to obtain the former from the latter.
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Overview of the lectures

The following is a tentative plan for the lectures to cover the material described above,
including some of the main references.

• Lecture 1: this will be an introduction to abelian varieties over finite fields of
characteristic p. In particular, we will discuss their classification up to isogeny
due to Honda and Tate ( [30, Théorème 2], [8, §2, Theorem 1] ) and important
properties determined by the characteristic polynomial of the Frobenius endomor-
phism (cf. [32]).

• Lecture 2: we will introduce the moduli space Ag of g-dimensional principally

polarised abelian varieties over k = Fp (cf. [21]). Then we will study its geomet-
ric structure by means of stratifications by invariants, in particular the p-rank
stratification (cf. [15,22]), the Newton stratification (cf. [11,19,26]), the a-number
stratification (cf. [4, 31]) and the Ekedahl-Oort stratification (cf. [27]).

• Lecture 3: from now on, we specialise to the supersingular locus Sg. In this lec-
ture, we will study its geometry, explicitly in low dimensions (cf. e.g. [13,14,20]),
and generally using flag type quotients (cf. [16,17,23]) and the foliation by central
leaves (cf. [10, 28]). We will also consider the restrictions of the stratifications
mentioned above from Ag to Sg (cf. [2, 5, 6]).

• Lecture 4: finally, we will study the arithmetic of Sg, focussing on the endo-
morphism rings and algebras and automorphism groups of the abelian varieties
(cf. [25,29]). We will introduce the notion of mass and discuss mass formulae for
superspecial (cf. [3,7,33]) and supersingular (cf. [9,12,34]) varieties, showing how
the latter may be deduced from the former through minimal isogenies and explicit
computations with Dieudonné modules.

Projects

The following are suggestions for projects; the lecture notes will contain more detailed
descriptions. While building on known results for special cases, these are open problems
in general, so any progress made on them will be an interesting contribution to the topic.

(1) Weil polynomials of abelian varieties over finite fields.
In this project, you will investigate which polynomials occur as characteristic
polynomials of Frobenius endomorphisms of abelian varieties over finite fields.
For any abelian variety A/Fq of dimension g, these characteristic polynomials
fA(x) ∈ Z[x] have the general shape

fA(x) = x2g + a1x
2g−1 + . . .+ ag−1x

g+1 + agx
g + ag−1qx

g−1 + . . .+ a1q
g−1x+ qg.

To see when this is a characteristic polynomial of Frobenius, you need to deter-
mine first when it is a Weil polynomial, and then whether its Newton polygon is
admissible. This has been worked out in dimensions g ≤ 5 but is open for higher g.
Using the LMFDB [18], you can then try to formulate and test heuristics for the
distribution of various arithmetic properties of the isogeny classes.
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(2) Intersections of stratifications.
In this project, you will investigate intersections of the various stratifications in-
troduced in the course, in particular between Newton strata and Ekedahl-Oort
strata, since this behaviour is generally not well understood.

(3) Automorphism groups, mass and |C(x)|.
For any x ∈ Sg, the following three things are (by definition) intimately related:
• The mass Mass(x), cf. (2);
• (The cardinality of) the central leaf C(x), cf. (1);
• The automorphism groups Aut(A) of the principally polarised abelian vari-
eties A corresponding to the points in C(x).

In this project, you will work on obtaining information on one of these three ob-
jects from the others, also using results from the literature.

(4) Mass functions on Ag.
In this project, you will work on extending the notion of mass from Sg to Ag.
For a moduli point x0 ∈ Sg the mass was defined in (2) above. The sum is over
the points in the central leaf, cf. (1), which is finite if and only if the underlying
abelian variety is supersingular. For a possibly non-supersingular point x0 ∈ Ag

corresponding to a principally polarised abelian variety A0, we can remedy this by
considering only principally polarised varieties A (quasi-)isogenous to A0, denoted
A ∼ A0. That is, we consider instead

C ′(x0) = {A = x ∈ Ag : A ∼ A0, A[p
∞] ≃ A0[p

∞]]}.

Then it follows from the results in [28] that C ′(x) is again finite. (Note that any two
principally polarised supersingular abelian varieties over k are isogenous.) Can
we find mass formulae for Ag, starting with low g, making use of its stratifications
and foliation structure or of explicit geometric families?
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