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Preface

In this text, I describe some projects that connect to my AWS lectures about algebraic
cycles on abelian varieties.

The first project is about integral aspects of Fourier duality and the Beauville decom-
position. The key idea is to use the results of Pappas [14] about integral Grothendieck–
Riemann–Roch to control the denominators that are needed. This leads to some results
that, to my knowledge, are not yet in the literature.

In the second project, the idea is to learn about Chow motives, and to see how the lan-
guage of motives can help to prove and interpret results about Chow groups. In particular,
we want to discuss Chow motives of non-simple abelian varieties. As an application, we
obtain very nice results about Chow motives (and hence also Chow groups) of supersingular
abelian varieties that are due to Fakhruddin [6] on the level of Chow groups and to Fu–Li [8]
on the level of Chow motives. This project is aimed at students who have not worked with
Chow motives before. The results about supersingular abelian varieties are known, but I
believe it should be possible to extend some of these ideas to the study of CH(Eg), where
E is any CM elliptic curve.

In the third project we consider a curve C of genus g ≥ 2, which we embed into its
Jacobian J using a 0-cycle ξ on C of degree 1. Then we study the relation between the
modified diagonal classes of C that were first introduced by Gross and Schoen, and the
vanishing of the components [C](s) in the Beauville decomposition of CH(J). If ξ = x0 is a
base point on C then the vanishing of [C](s) for some s ≥ 1 is equivalent to the vanishing of
the modified diagonal Γs+2(C, x0). However, this setup is too restrictive; for instance, it is
known that Γ3(C, x0) can only vanish if (2g − 2) · x0 is a canonical divisor, and in general
there are no points x0 with this property. It is therefore natural to allow ξ to be an arbitrary
0-cycle of degree 1; but in that case many basic properties still need to be worked out. For
instance, there are at least three natural ways to generalize the Gross–Schoen modified
diagonal classes, and it is unclear which of the three has the best properties. There is really
a lot to explore here.

These projects are intended as a starting point for possible discussions. If such dis-
cussions branch out in other directions, that’s perfectly fine; there is a lot of interesting
material available, and it would be no problem if things diverge from the topics in these
notes. I look forward to working with the participants of the AWS!

Ben Moonen
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1. Integral aspects of Fourier duality and the Beauville decomposition

1.1. Let X be a g-dimensional abelian variety over a field k, with dual abelian variety Xt.
Let P be the Poincaré line bundle on X ×Xt, and write ℘ = c1(P) ∈ CH1(X ×Xt) for
the corresponding class. As discussed in Section 8 of the Lecture Notes, the correspondence

ch(P) = exp(℘) = 1 + ℘+ ℘2

2! +
℘3

3! + · · ·+ ℘2g

(2g)! ∈ CH(X ×Xt)Q

defines the Fourier transform FX = ch(P)∗. Concretely, this means that FX : CH(X)Q →
CH(Xt)Q is defined by FX(α) = prXt,∗

(
pr∗X(α) · ch(P)

)
. The basic properties of this are:

(1) FXt ◦ FX = (−1)g · [−1]∗X , and hence FX is an isomorphism;
(2) for x, y ∈ CH(X)Q we have the relations

FX(x ⋆ y) = FX(x) · FX(y) , FX(x · y) = (−1)g · FX(x) ⋆ FX(y) .

Closely related to this is that we have Beauville’s decomposition

CHi(X)Q =
⊕
s

CHi
(s)(X)Q

which can be characterised by its property that (for n an integer) [n]∗X is multiplication by
n2i−s on the summand CHi

(s)(X)Q. The relation to Fourier duality is that

CHi
(s)(X)Q =

{
α ∈ CHi(X)Q

∣∣ FX(α) ∈ CHg−i+s(Xt)
}
.

The leading questions in this project are:

• Can we define a Fourier transform with integral coefficients, rather than Q-coefficients?
Or can we at least bound the denominators that are needed?

• Does there exist an integral version of Beauville’s decomposition, or a version in which
we can control the denominators that are needed?

1.2. Suppose we wanted to define an integral version of Fourier duality on the abelian
variety X. We are then confronted with two issues:

• The Fourier transform FX is defined by the correspondence ch(P) ∈ CH(X ×Xt)Q,
and a priori we need denominators to define this class.

• In the proof of the above properties (1) and (2) we may need Q-coefficients; these
properties may not hold integrally.

If M and N are positive integers, let us say that we have an (M,N)-integral Fourier
duality on X if we have integral transformations

F : CH(X) → CH(Xt) , Ft : CH(Xt) → CH(X) ,

with the following properties:
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(0) the induced maps CH(X)Q → CH(Xt)Q and CH(Xt)Q → CH(X)Q equal M · FX ,
respectively M · FXt ;

(1) N · (Ft ◦ F) = M2N · (−1)g · [−1]∗X ;
(2) for x, y ∈ CH(X) we have the relation

M · F(x ⋆ y) = F(x) · F(y) .

In other words: the operators F lift the operators M ·F , and the expected duality relation
only hold after multiplication by an extra factor of N .

Remarks. (1) If (F,Ft) is an (M,N)-integral Fourier duality then (N · F, N · Ft) is an
(MN, 1)-integral Fourier duality. One could therefore say that the challenge is to find
an (M,N)-integral Fourier duality with M as small as possible.

(2) In [2], Proposition 3′, it is shown that, for a given X/k, there exists some integer M

such that there exists an (M, 1)-integral Fourier duality. However, the proof is not
effective and does not give a concrete value of M .

(3) You may wonder why we only require the relation M ·F(x⋆y) = F(x) ·F(y) to hold and
not also the second identity in 1.1(2). A version of this second identity can be deduced
from the first, but the required constants are not as sharp; see the next exercise. Note
that when we work with Q-coefficients, the relation F (x ⋆ y) = F (x) · F (y) has a
direct proof, and then the other identity is obtained using duality.

Exercise. Assume (F,Ft) is an (M,N)-integral Fourier duality, as above. Show that for all
x, y ∈ CH(X) we have the relation N2M4 · F(x · y) = N2M3 · (−1)g · F(x) ⋆ F(y).

1.3. Define γ ∈ CH(X ×Xt) by

γ = (2g)! · ch(P) =

2g∑
i=0

(2g)!
i! · ℘i ,

and define F = γ∗ : CH(X) → CH(Xt). Define Ft : CH(Xt) → CH(X) analogously. Note
that the induced map FQ : CH(X)Q → CH(Xt)Q is (2g)! ·FX , and likewise for FtQ. The goal
is now to determine an explicit integer N such that the pair (F,Ft) is an (M,N)-integral
Fourier transform, where from now on we set M = (2g)!. The key idea is to use the results
of Pappas [14].

• Carefully go through the proof of Theorem 8.3 in the Lecture Notes. We want to
calculate Ft ◦ F using the same strategy. Convince yourself that the key issue is to
calculate (with integral coefficients!) the class pr1,∗(γ), where pr1 : X × Xt → X is
the projection map.

• Work through the first couple of pages of the paper [14]. Note that the main result
of [14] is only proven over fields k of characteristic 0; we therefore make this assumption
on the base field. Write down precisely what the result of Pappas gives in the situation
of a projective abelian scheme X → S of relative dimension g. A key point here is
that the relative tangent sheaf TX/S is a trivial vector bundle, so that ci(TX/S) = 0

for all i ≥ 1.
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• Let X/k be a g-dimensional abelian variety. Let e : Spec(k) → X be the inclusion
of the origin. Of course, CH

(
Spec(k)

)
= CH0

(
Spec(k)

)
= Z ·

[
Spec(k)

]
. Define

integers Tm as in [14], formula (1.2), and let sn = n! · chn as in [14], Section 2.b. Use
the results of Pappas to show that

Tn
n! · sn

(
e∗[OSpec(k)]

)
=

{
Tg · e∗[Spec(k)] if n = g,

0 otherwise.

• Prove that we can take N = T2g/(2g)!, which by [14], Lemma 2.1 is an integer. Can
you further sharpen the value of N that is needed?

1.4. Next we should also like to obtain an “integral” version of the Beauville decomposition.
Note that with Q-coefficients, the existence of a Beauville decomposition is not a formal
consequence of Fourier duality. A key point is that we need Lemma 8.7(2) in the Lecture
Notes.

Let X/k be a g-dimensional abelian variety, where we assume char(k) = 0. If you
have found an (M,N)-integral Fourier duality with M = (2g)!, you should also be able
to get a Beauville decomposition of CH(X) ⊗ Λ, for some coefficient ring Λ of the form
Λ = Z[1/MN ].

Write CH(X)Λ = CH(X) ⊗ Λ. The main point in this last part of the project is that
you should find a definition of subspaces CHi

(s)(X)Λ ⊂ CH(X)Λ that works. In any case,
you need that some version of [3], Proposition 1 holds, and such that also the analogue of
Lemma 8.7(2) in the Lecture Notes holds. (If you have found the optimal value of N then
you should find that in fact we can take Λ = Z[1/(2g + 1)!].)

1.5. As a final topic, one could try to show that the sl2-action that is discussed in Section 9
of the Lecture Notes works with coefficients in Λ.
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2. Chow motives of abelian varieties

2.1. This project is aimed at students who have not worked with Chow motives before.
If you want to work on this, you are advised to first read Part 3 of the Lecture Notes, or
some other introduction to Chow motives. Once you have a basic understanding of the
definitions, you should try to start working on the questions below, and along the way you
will start seeing how powerful the theory of Chow motives really is. As we shall see, the
tensor structure on the category CHM(k) of Chow motives plays a main role.

2.2. In what follows we use multi-index notation: elements of Zt are written as n =

(n1, . . . , nt), and we define |n| = n1 + · · ·+ nt. If i = (i1, . . . , it) is another t-tuple then we
define ni = ni1

1 · · ·nit
t .

We work over some base field k. Let X be an abelian variety over k which decomposes
as a product, say X = X1 × · · · × Xt. Let gj = dim(Xj) and g = (g1, . . . , gt), so that
dim(X) = |g|. For n ∈ Zt we have an endomorphism [n]X : X → X, given by (x1, . . . , xt) 7→
(n1x1, . . . , ntxt). The usual multiplication-by-n maps are the special case where n1 = · · · =
nt = n.

A first question we ask is whether the usual Beauville decomposition can be refined as a
decomposition into simultaneous “eigenspaces” with respect to all operators [n]∗X . While it
seems plausible that this should work, there is a risk that the problem becomes notationally
rather involved. The theory of Chow motives (of which we shall only need a couple of basic
principles) can help us to solve the problem is a very elegant way.

• Have a look at the Deninger–Murre theorem, which is Theorem 13.1 in the Lecture
Notes. Do you see what kind of “multi-factor” analogue we would expect in the above
situation of a product abelian variety?

• Use the tensor structure on the category (see Basic Fact 12.4(3) in the Lecture Notes)
to obtain a decomposition of h(X) from the Deninger–Murre decompositions of the
factors Xj . (It’s really that simple!)

• If f : X → Y is an isogeny of abelian varieties, show that the induced morphism of
Chow motives f∗ : h(Y ) → h(X) is an isomorphism. Using this, we can extend the
result to arbitrary non-simple abelian varieties, even those that are not a product of
smaller factors.

2.3. We now want to use the tensor structure on the category CHM(k) to obtain a very
nice description of the Chow motive of a supersingular abelian variety. In what follows,
we assume that k is an algebraically closed field of characteristic p > 0. Let X be a g-
dimensional abelian variety over k, where we assume that g ≥ 2. (The case g = 1 is of little
interest.)

There are several ways to define when X/k is said to be supersingular. We refer to
Section 1.3 of the Lecture Notes of V. Karemaker or Chapter 3 of the Lecture Notes of
R. Pries for further discussion. For this project, all you really need to know are the following
facts.
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2.4 Facts. (1) If p is a prime number, there exists a supersingular elliptic curve E over Fp.
With k = k̄ of characteristic p as above, every supersingular elliptic curve over k is
defined over the subfield Fp2 ⊂ k, and any two supersingular elliptic curves over k are
isogenous.

(2) If E/k is a supersingular elliptic curve, End0(E) is a quaternion algebra with centre Q.
(More precisely, it is the unique such quaternion algebra that is ramified at the primes p
and ∞, and which splits at all other primes.)

(3) Let k = k̄ be as above, and let g be an integer with g ≥ 2. If E1, . . . , Eg, E
′
1, . . . , E

′
g are

arbitrary supersingular elliptic curves over k, we have E1 × · · · × Eg
∼= E′

1 × · · · × E′
g.

(This is due to Deligne.)
(4) Let E/k be any supersingular elliptic curve over k (which exists by the first fact). If

X/k is a g-dimensional supersingular abelian variety with g ≥ 2 then X is isogenous
to Eg. (Caution: it is not true in general that X can be defined over a finite field.)

2.5. To simplify notation, we now fix the base field k = k̄, and we simply write E instead
of Ek, where of course we assume E to be supersingular. As noted above, isogenous abelian
varieties have isomorphic Chow motives. By the facts just stated, we may from now on
assume that X = Eg.

Our goal is to find a description of the Chow motive of X, using the relation h(X) =

h(E)⊗g = [1⊕h1(E)⊕1(−1)]⊗g. The key point is to understand the motive h1(E)⊗h1(E).
We have the dual motive h1(E)∨, which satisfies h1(E)∨ ∼= h1(E)

(
1
)
, so it suffices to better

understand the motive
End

(
h1(E)

)
:= h1(E)∨ ⊗ h1(E) .

(This is an algebra in the category CHM(k).) The advantage of this change in perspective
is that we know that

HomCHM(k)

(
1,End(h1(E))

)
= EndCHM(k)(h

1(E)) ∼= End0(E) .

(For the last isomorphism, see Remark 13.4 in the Lecture Notes.) This gives us a morphism
of motives

End0(E)⊗ 1 −→ End
(
h1(E)

)
. (2.5.1)

(The source is just a direct sum of 4 copies of the unit motive 1.) The main steps to work
through now are the following; here we let bi =

(
2g
i

)
be the Betti number in degree i of X.

• Show, using the main result of [1], that the morphism (2.5.1) is an isomorphism. (You
may need some help with this.)

• Derive from this that h1(E)⊗2 ∼= 1(−1)⊕4. (Note: this is very special for supersingular
elliptic curves; it certainly does not hold for arbitrary elliptic curves.)

• Show that
h2n(X) ∼= 1(−n)⊕ b2n (2.5.2)

for all n ≥ 1 and that
h2n+1(X) ∼= h1(E)

(
−n

)⊕ b2n+1/2
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for all n ≥ 0. (You may use the combinatorial identity
∑

a+2b=m

(
g
a b

)
·2a =

(
2g
m

)
, where(

g
a b

)
= g!/a! b! (g−a−b)!. Both sides compute the coefficient of xm in (1+2x+x2)g =

(1 + x)2g.)
• Passing to Chow groups, deduce from these results that for a supersingular abelian

variety X/k we have

CHj(X) = CHj
(0)(X)⊕ CHj

(1)(X) for all j ≥ 0,

with

CHj
(0)(X) ∼= Qb2j , CHj

(1)(X) ∼=
(
E(k)⊗Q

)⊕ b2j−1/2 .

Thus, there are only two ‘layers’ in the Beauville decomposition that occur. This
shows that Theorem 11.7 in the Lecture Notes (due to Bloch) does not hold over
fields of characteristic p.

Note: These last results about the Chow groups of X are due to Fakhruddin [6]; the results
about the structure of the motives hi(X) were proven by Fu and Li in [8], though their proof
that the morphism (2.5.1) is an isomorphism is inadequate and the above method gives a
much simpler calculation.

2.6. These results about supersingular abelian varieties hinge on two facts: (a) if X is a g-
dimensional supersingular abelian variety, X ∼ Eg for a supersingular elliptic curve E; (b) if
E is a supersingular curve, the motive h1(E)⊗h1(E) is purely of Tate type, more precisely, it
is isomorphic to 1(−1)⊕4. Both facts are very particular for supersingular abelian varieties.
However, it should still be possible to fully describe the Chow motive and the Chow groups
of Eg if E is an elliptic curve (over an algebraically closed field k, say) whose endomorphism
algebra K = End0(E) is an imaginary quadratic field. General results about the motivic
decomposition of abelian varieties with a nontrivial endomorphism algebra have been given
in [11], but here we may be able to give a more explicit description.

Let then E be an elliptic curve such that K = End0(E) is an imaginary quadratic field.
To begin with, we of course have

h(E) = h0(E)⊕ h1(E)⊕ h2(E) ,

with h0(E) ∼= 1 and h2(E) ∼= 1(−1). We have CH
(
h1(E)

)
= CH1

(
h1(E)

)
, and this group is

nonzero, unless k is the algebraic closure of a finite field. To understand h(Eg) = h(E)⊗g,
it suffices to understand the motives h1(E)⊗m for m ≥ 2. Note that h1(E) is a K-module
in the category CHM(k) (i.e., a motive with a given action of K by endomorphisms). If M
is a K-module in CHM(k) then we have objects such as M ⊗K M , and also we can take
symmetric and exterior powers relative to K. If we take g = 2, I believe it is the case that

h1(E)⊗ h1(E) ∼= 1(−1)⊕2 ⊕
(
∧2
K h1(E)

)
,
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and CH
(
∧2
K h1(E)

)
= CH2

(
∧2
K h1(E)

)
. (The summand 1(−1)⊕2 comes from the endomor-

phisms of E.) In total this gives the following picture for h(E2).

∧2
K h1(E)

h1(E)⊕2 h1(E)
(
−1

)⊕2

1 1(−1)⊕4 1(−2)

Each summand is a motive that contributes to CH(E2) in only one degree, and we have
placed the summands in a diagram of the type discussed in Section 8 of the Lecture Notes.

Moving on to E3, the picture for h(E3) should be as follows.

∧3
K h1(E)[

∧2
K h1(E)

]⊕3 [
∧2
K h1(E)

(
−1)

)]⊕3

h1(E)⊕3 h1(E)
(
−1

)⊕9
h1(E)

(
−2

)⊕3

1 1(−1)⊕9 1(−2)⊕9 1(−3)

In the mth horizontal layer what you see appearing, ignoring Tate twists, is the tensor
product of a single motive, namely ∧m

K h1(E), with the (3 − m)th exterior power of the
standard representation of the Lie algebra gl6. This is an instance of the refined Lefschetz
decomposition of [11], Theorem 7.2, which I can explain to you in greater detail. What
I guess is true but have not verified is that, for arbitrary g, the only ‘new’ motives that
appear are the motives ∧g

K h1(E), and that CH
(
∧g
K h1(E)

)
= CHg

(
∧g
K h1(E)

)
. (But I could

be wrong here!) It would be very interesting to work this out in detail.
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3. Modified diagonals and the curve class

3.1. We start by setting up some notation that will be in force throughout this project. We
work over an algebraically closed field k of arbitrary characteristic. Let C/k be a smooth
projective (irreducible) curve of genus g; we assume g ≥ 2. Let J be the Jacobian of C.

We need some notation related to projection maps. If n ≥ 1 and I ⊂ {1, . . . , n} is a
subset with m elements, let prI : Cn → Cm be the projection maps onto the factors indexed
by I; thus, for instance, pri : Cn → C is the projection to the ith factor, prij : Cn → C2

is the projection onto the ith and jth factors, etc. It will also be convenient to introduce
the notation p̂rI : C → Cn−m for the projection to the factors that are not in I; thus, for
instance, p̂ri : Cn → Cn−1 is the projection map that omits the ith factor.

For n ≥ 1, we denote by ∆
(n)
C : C → Cn the diagonal morphism x 7→ (x, . . . , x). For

n = 1 this is the identity map on C; for n = 2 it is the usual diagonal map, and we write ∆C

instead of ∆(2)
C . We use the same notation ∆

(n)
C for the image of this diagonal morphism,

which is called the small diagonal in Cn.

3.2. This project is about the relation between two invariants. We shall first explain this in
the classical setting. As we shall see, this setup is too restrictive; a more general version will
be discussed below. All Chow groups that we consider are with Q-coefficients, so CH(X)

from now on means CH(X)⊗Q.
If we choose a base point x0 ∈ C(k), we get an embedding ιx0 : C ↪→ J , given by

x 7→ OC(x− x0). Let [C] ∈ CH1(J) = CHg−1(J) be the class of the curve ιx0(C) ⊂ J , and
let [C](s) be the component of this class in the Beauville summand CHg−1

(s) (J). It is known
that

[C](s) = 0 =⇒ [C](t) = 0 for all t ≥ s. (3.2.1)

Define s(C, x0) to be the smallest natural number s for which [C](s) = 0. It is known that
[C](0) ̸= 0, whereas [C](s) = 0 for all s ≥ g, so s(C, x0) ∈ {1, . . . , g}.

There is a very famous result of Ceresa [5] that needs to be mentioned here, as it has had
an enormous impact on research in this area. In the above setting, write [C−] ∈ CHg−1(J)

for the image of [C] under [−1]J,∗. Then it is easy to see that [C] and [C−] have the same
class in cohomology. Ceresa proved (working over C) that for a very general curve C of
genus ≥ 3, the classes [C] and [C−] are not algebraically equivalent. It turns out to be
rather subtle to decide for which curves C these classes are algebraically equivalent, and if
we work modulo rational equivalence, the problem is of course even more subtle. (Note that
modulo rational equivalence, the question depends on the chosen base point x0; modulo
algebraic equivalence the choice of x0 does not matter.) Because [C] − [C−] is twice the
sum of the terms [C](s) for s running over the odd positive integers, and because we have
the relation (3.2.1), we see that [C] = [C−] in CHg−1(J) if and only if [C](1) = 0.

Let us now look at some other interesting classes, known as the modified diagonal classes,
which were first studied in a paper by Gross and Schoen. We denote them by Γn(C, x0) ∈
CH1(C

n). We start with some explicit examples:

Γ2(C, x0) = [∆C ]− [C × x0]− [x0 × C] ∈ CH1(C
2) ,
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and
Γ3(C, x0) =

[
∆

(3)
C

]
− [∆C × x0]︸ ︷︷ ︸

+ permutations

+ [C × x0 × x0]︸ ︷︷ ︸
+ permutations

∈ CH1(C
3) .

(In total Γ3(C, x0) is a sum of 1 + 3 + 3 terms.) The general formula is:

Γn(C, x0) =
n∑

k=1

(−1)n−k ·
( ∑
#I=k

pr∗I [∆
(k)
C ] ·

∏
j /∈I

pr∗j [x0]
)
, (3.2.2)

where the second sum ranges over all subsets I ⊂ {1, . . . , n} of cardinality k.
It is known that Γn(C, x0) = 0 =⇒ Γn+1(C, x0) = 0. Now define n(C, x0) to be the

smallest integer n for which Γn(C, x0) = 0. It turns out that there is a simple and beautiful
connection with the invariant s(C, x0), which is given by the relation n(C, x0) = 2+s(C, x0).
Understanding the details of this already requires a considerable effort. (See for instance
the proof of Theorem 4.3 in [13], which makes essential use of the results in [12].)

3.3. We can now finally explain what the project is about. In the above, we have used a
base point x0 ∈ C(k) to embed the curve C into its Jacobian. It turns out that this is too
restrictive. For instance, it is known that Γ3(C, x0) and [C](1) can vanish only if (2g−2) ·x0
is a canonical divisor on C, which is an extremely restrictive condition. For this reason, we
should consider a more general situation, in which we use an arbitrary 0-cycle ξ ∈ CH0(C)

of degree 1 to embed C in J . In that setting it is known that the vanishing of Γ3(C, ξ) (to
be defined, see below) is again equivalent to the vanishing of the class [C](1). However, for
the relation between Γn(C, ξ) and [C](n−2) in general, not much seems known. As we shall
discuss, there are in fact three different versions of modified diagonals, which we shall call
An(C, ξ), Bn(C, ξ) and Γn(C, ξ) such that:

• If we take ξ = x0, a point, all three versions coincide with the classical Gross–Schoen
modified diagonals Γn(C, x0).

• All three versions are the same modulo algebraic equivalence.
• For n = 3 the vanishing of these classes is independent of which of the three we use.

Part of the project is to decide which of the three is the ‘right’ generalization of the Gross–
Schoen modified diagonals.

3.4. Chow motives, the covariant theory. As a preparation for what follows, we briefly
review the covariant theory of Chow motives, which turns out to be the most convenient
setting to use. We denote this category of Chow motives by CHM•(k), where the lower dot
should remind us that we use the ‘homological’ version.

If X and Y are smooth projective over k, define Corri(X,Y ) = CHdim(X)+i(X × Y ).
Composition of correspondences gives us a map

Corri(X,Y )× Corrj(Y,Z) → Corri+j(X,Z) ,

defined by (α, β) 7→ β ◦α = prXZ,∗
(
pr∗XY (α) ·pr∗Y Z(β)

)
. The objects of CHM•(k) are triples

(X, p,m) with X/k smooth projective, p ∈ Corr0(X,X) a projector (meaning: p ◦ p = p)
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and m ∈ Z. The morphisms are given by:

HomCHM•(k)

(
(X, p,m), (Y, q, n)

)
= q ◦ Corrm−n(X,Y ) ◦ p .

We have a covariant functor h that sends X to h•(X) = (X, [∆], 0) and that sends
f : X → Y to [Γf ] ∈ Corr0(X,Y ) = HomCHM•(k)

(
h•(X), h•(Y )

)
.

We define 1(n) =
(
Spec(k), id, n

)
. If M is an object of CHM•(k), its Chow groups are

defined by CHn(M) = HomCHM•(k)

(
1(n),M

)
. Note that for a smooth projective X/k this

gives

CHn

(
h•(X)

)
= HomCHM•(k)

(
1(n), h•(X)

)
= Corrn

(
Spec(k), X

)
= CHn(X) .

Here is an example that we shall use throughout the discussion that follows. Let C/k

be a curve as above. If ξ ∈ CH0(C) has degree 1, we obtain a motivic decomposition

h•(C) = h0(C)⊕ h1(C)⊕ h2(C) with hi(C) = (C, πi, 0) , (3.4.1)

where the projectors πi ∈ Corr0(C,C) = CH1(C × C) are given by

π0 = C × ξ , π2 = ξ × C , π1 = [∆C ]− π0 − π2 .

Moreover, h0(C) ∼= 1 and h2(C) ∼= 1(1). This decomposition depends on the chosen ξ, but
in what follows we shall not include this in the notation.

Another example that is relevant for us is that we have the (homological version of the)
Deninger–Murre decomposition, i.e., we have a decomposition

h•(J) = h0(J)⊕ h1(J)⊕ · · · ⊕ h2g−1(J)⊕ h2g(J)

which is stable under all operators [n]∗, for n ∈ Z, and such that [n]∗ induces ni · id on hi(J).

3.5. In everything that follows, ξ denotes an element of CH0(C) of degree 1. Since ξ will
usually be fixed, we will sometimes suppress it from the notation.

The class ξ induces a morphism of Chow motives ιξ : h•(C) → h•(J), and hence ho-
momorphisms ιξ,∗ : CHi(C) → CHi(J). If ξ is represented by a 0-cycle on C with inte-
gral coefficients, say ξ =

[∑r
j=1 mj · aj

]
with aj ∈ C(k) and mj ∈ Z (and of course∑

mj = 1) then it is clear how to proceed: in this case, ξ defines an embedding ιξ : C ↪→ J

by x 7→ OC(x − ξ) ∈ J(k) and we simply consider the induced map on motives. A subtle
point here is that this map on motives is well-defined for any ξ ∈ CH0(C)deg=1. (Recall
that all Chow groups are taken with Q-coefficients.) One way to see this is to note that
every class in CH0(C)deg=0 = J(k)⊗Q can be represented by a 0-cycle on C with integral
coefficients, because J(k) is a divisible group (use that k = k̄); this readily implies that
also every class in CH0(C)deg=1 can be represented by a 0-cycle with integral coefficients.
Moreover, if ξ and ξ′ are 0-cycles of degree 1 with integral coefficients that define the same
class in CH0(C) then the resulting embeddings ιξ and ιξ′ differ by a translation over a
torsion point of J ; but such a translation induces the identity on h•(J). (For this last
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fact, cf. [2], Proposition 4(ii); it would be good to write out the details.) The morphism
ιξ : h•(C) → h•(J) that we obtain is therefore independent of which integral representative
for the class ξ we choose.

For i ≥ 0, define

Cξ,i = component of ιξ,∗[C] ∈ CH1(J) in CH1

(
hi(J)

)
.

It is easy to see that Cξ,i can be nonzero only for 2 ≤ i ≤ g+1. If ξ = x0 is a base point, the
class Cξ,i is the same as the Beauville component [C](i−2) ∈ CH(J) considered in 3.2. The
picture to keep in mind is as follows; this is the homological version of the picture discussed
in Section 8 of the Lecture Notes. (In the picture we take g = 7 and we let hi = hi(J).)

CH0

CH1

CH2

CH3

CH4

CH5

CH6

CH7

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14

Cξ,2

Cξ,3

Cξ,4

Cξ,5

Cξ,6

Cξ,7

Cξ,8

3.6. Problem 1. Is the analogue of (3.2.1) valid in the setting where we allow ξ to be an
arbitrary element of CH0(C) of degree 1 ? In other words, is it true that if Cξ,i = 0 for
some i then also Cξ,j = 0 for all j ≥ i ?

The implication (3.2.1) was proven by Polishchuk in [15]. The argument uses the sl2-
action on CH(J) as in Theorem 9.4 from the Lecture Notes. Let λ ∈ CHg−1

(0) (J) be the class
as in that theorem; in the present setting, applying Theorem 9.4 to the Jacobian J of a
curve C, we simply have λ = [C](0). (Though the components [C](s) for s ≥ 1 in general
depend on the chosen base point x0 ∈ C(k), the class [C](0) ∈ CHg−1

(0) (J) is independent of
choices.) In the present setting, the class ℓ of Theorem 9.4 of the Lecture Notes is the class
θ ∈ CH1

(0)(J) of a symmetric theta divisor on J .
Polishchuk defines classes pn ∈ CHn

(n−1)(J) and qn ∈ CHn
(n)(J) by

pn = F
(
[C](n−1)

)
, qn = F

(
θ · [C](n)

)
.

13



He then shows that the operator f : y 7→ λ ⋆ y from the sl2-action acts on polynomial
expressions in these classes (using the ring structure of CH(J) given by the intersection
product) as the operator

D = 1
2 ·

∑
m,n≥1

(
m+ n

n

)
· pm+n−1 · ∂pm∂pn+

∑
m,n≥1

(
m+ n− 1

n

)
· qm+n−1 · ∂qm∂pn −

∑
n≥1

qn−1 · ∂pn ,

where ∂pm means ‘take the partial derivative with respect to pm (thought of as a variable)’,
and likewise for ∂qm . In particular,

f(p2pm) =

(
m+ 2

2

)
· pm+1 − q1pm − qm−1p2 , (3.6.1)

and because it is clear from the definitions that pm = 0 =⇒ qm−1 = 0, we obtain the
implication pm = 0 =⇒ pm+1 = 0, which is the Fourier-dual version of (3.2.1).

To deal with the general case (arbitrary ξ of degree 1), one option is to redo all of
Polishchuk’s calculations from [15]. This seems quite a bit of work. As what he proves goes
much further than what we end up using, one could also try to give a direct proof of the
relation (3.6.1), which is in fact Fourier-dual to the relation(
m+ 2

2

)
· [C](m) =

(
θ · [C](1)

)
⋆ [C](m−1) + [C](1) ⋆

(
θ · [C](m−1)

)
− θ ·

(
[C](1) ⋆ [C](m−1)

)
.

(At this point, it seems a good idea to remark that the RHS is what Polishchuk in [15] calls
[C](1) ⋆1 [C](m−1) and to use ibid., Lemma 2.1.)

3.7. Modified diagonals—the first two variants. We keep the setting as before, so
ξ is a class in CH0(C) of degree 1. The first type of modified diagonal is an immediate
generalization of (3.2.2). Define

Γn(C, ξ) =

n∑
k=1

(−1)n−k ·
( ∑
#I=k

pr∗I [∆
(k)
C ] ·

∏
j /∈I

pr∗jξ
)
,

where the second sum ranges over all subsets I ⊂ {1, . . . , n} of cardinality k. For instance,

Γ2(C, ξ) = [∆C ]− [C × ξ]− [ξ × C] ∈ CH1(C
2) ,

and
Γ3(C, ξ) =

[
∆

(3)
C

]
−

(
[∆C ]× ξ

)︸ ︷︷ ︸
+ permutations

+
(
[C]× ξ × ξ

)︸ ︷︷ ︸
+ permutations

∈ CH1(C
3) .

These modified diagonals have a nice motivic interpretation, which was first explored
in [13]. We have the decomposition (3.4.1). Now define π+ = π1+π2 = [∆C ]−(C×ξ). This
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gives a coarser motivic decomposition h(C) = h0(C)⊕ h+(C) with h+(C) = h1(C)⊕ h2(C).
This induces decompositions

h(Cn) =
(
h0(C)⊕ h+(C)

)⊗n
=

⊕
J⊂{1,...,n}

hJ(C
n) (3.7.1)

where, for J ⊂ {1, . . . , n} we define

hJ(C
n) = hν1(C)⊗ hν2 ⊗ · · · ⊗ hνn(C) with νi =

{
+ if i ∈ J ,

0 if i /∈ J .

In particular, the direct summand h{1,...,n}(C
n) = h+(C)⊗ h+(C)⊗ · · · ⊗ h+(C) is cut out

by the projector π⊗n
+ . With this notation,

Γn(C, ξ) =
(
π⊗n
+

)
∗
[
∆

(n)
C

]
,

i.e., the modified diagonal class Γn(C, ξ) is nothing but the component of the class
[
∆

(n)
C

]
∈

CH1(C
n) = ⊕J CH1

(
hJ(C

n)
)

in CH1

(
h+(C)⊗n

)
.

This immediately brings us to the second type of modified diagonal class. Namely,
instead of projecting the small diagonal class

[
∆

(n)
C

]
to the summand h+(C)⊗n, we could

project to the even smaller summand h1(C)⊗n. Indeed, we have the finer decomposition

h(Cn) =
(
h0(C)⊕ h1(C)⊕ h2(C)

)⊗n
=

⊕
K,L⊂{1,...,n}

K∩L=∅

hK,L(C
n) (3.7.2)

where we now define hK,L(C
n) = hν1(C)⊗hν2 ⊗· · ·⊗hνn(C) with νi = 1 if i ∈ K and νi = 2

if i ∈ L, and with νi = 0 for i /∈ K ∪ L. The component h{1,...,n},∅(C
n) = h1(C)⊗n is cut

out by the projector π⊗n
1 , and we are led to define

Bn(C, ξ) =
(
π⊗n
1

)
∗
[
∆

(n)
C

]
.

In other words, Bn(C, ξ) is the component of
[
∆

(n)
C

]
in CH1

(
h1(C)⊗n

)
. First examples:

B2(C, ξ) = Γ2(C, ξ) and

B3(C, ξ) = Γ3(C, ξ)−
3∑

j=1

p̂r∗j
(
∆C,∗(ξ)− ξ × ξ

)
. (3.7.3)

A simple but important observation should be made here: for a point x0 ∈ C(k), viewed as
a 0-cycle on C, we have ∆C,∗(x0) = x0 × x0; but for a general 0-cycle, ∆C,∗(ξ) is not at all
the same as ξ× ξ. (Note that ξ 7→ ∆C,∗(ξ) is a linear map, whereas ξ 7→ ξ× ξ is quadratic.)

The relation (3.7.3) can be generalized. To express this, it is useful to define homomor-
phisms

βn , γn : CH(C) → CH(Cn)

by
βn = π⊗n

1 ◦∆(n)
C,∗ , γn = π⊗n

+ ◦∆(n)
C,∗ .
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(These maps of course depend on C and ξ but if there is no risk of confusion, we omit ξ from
the notation.) As an example, if α ∈ CH0(C) then we have γ2(α) = β2(α) = ∆C,∗(α)−α×α.

By definition, Bn(C, ξ) = βn[C] and Γn(C, ξ) = γn[C]. It is not hard to show that for
all α ∈ CH0(C) and n ≥ 1 we have βn(α) = γn(α). Further,

Bn(C, ξ) = Γn(C, ξ)−
n∑

j=1

p̂r∗j
(
γn−1(ξ)

)
. (3.7.4)

(To get familiar with these notions, you should of course prove these assertions!) It is
also not hard to show (see [13], Remark 2.6) that if we take a point x0 ∈ C(k) we have
γn−1(x0) = 0, so that Bn(C, x0) = Γn(C, x0) is the ‘usual’ Gross–Schoen modified diagonal
class.

3.8. Problem 2. First show that

Γn(C, ξ) = 0 ⇐⇒ Bn(C, ξ) = 0 and γn−1(ξ) = 0 .

Note that (3.7.2) is a refinement of the decomposition (3.7.1). It helps if you understand in
which summands of (3.7.2) all terms that occur in (3.7.4) are located.

For n = 3, something extremely interesting happens. Namely, the following can be
proven.

• If B3(C, ξ) = 0 then (2g − 2) · ξ = KC .
• If (2g − 2) · ξ = KC then B3(C, ξ) = 0 implies that γ2(ξ) = 0, and hence that
Γ3(C, ξ) = 0.

We conclude from these that the vanishing of Γ3(C, ξ) is in fact equivalent to the vanishing
of B3(C, ξ), and that there is a unique element ξ ∈ CH0(C)deg=1 for which this may happen,
namely ξ = 1

2g−2 ·KC .
Try to prove all these assertions. Some hints: for the first assertion, consider B3(C, ξ)

as a correspondence (of degree −1) from C2 to C, and apply this correspondence to the
class [∆C ] ∈ CH1(C

2). For the second assertion, assume (2g − 2) · ξ = KC , calculate the
intersection product B3(C, ξ) · ([∆C ] × C), and then apply pr23,∗. (These calculations are
not extremely hard but you need to do them carefully, as it is easy to make mistakes.)

3.9. In view of these results, there is a canonical choice for the 0-cycle ξ, namely ξ =
1

2g−2 ·KC . With that choice, it is known that

Γ3(C, ξ) = 0 ⇐⇒ Cξ,3 = 0 ⇐⇒ ιξ,∗[C] ∈ CH1

(
h2(J)

)
. (3.9.1)

(For the notation Cξ,i see 3.5.) This is due to Zhang [17], Theorem 1.5.5.1

1For some of the formulas presented in [17] the details are omitted, and my own calculations in fact
give slightly different formulas. The same result (3.9.1) is also claimed, with a very different proof, in [7],
Proposition 3.1, but the proof that is given there is not correct as it makes essential use of results from [9]
that only work in a more restrictive setting and do not carry over to the situation where ξ is an arbitrary
class in CH0(X)deg=1.

16



In general, it is very hard to decide for which curves C, taking ξ = 1
2g−2 · KC , the

modified diagonal class Γ3(C, ξ) vanishes. Recently, several very nice papers have appeared
that contain results about this; see for instance [4], [10], [16].

3.10. Problem 3. To what extent do these results for n = 3 have analogues for higher
values of n ? By the above, the vanishing of Γn(C, ξ) implies that also γn−1(ξ) = 0; what
restrictions on ξ does this give? For n ≥ 4, is it true that the vanishing of Bn(C, ξ) is
equivalent to the vanishing of Γn(C, ξ), similar to what happens for n = 3, or does this at
least hold if we take ξ = 1

2g−2 ·KC ?

3.11. Modified diagonals—a third variant. There is an obvious third way to generalize
the Gross–Schoen modified diagonal classes, namely by defining

An(C, ξ) =

n∑
k=1

(−1)n−k ·
( ∑
#I=k

pr∗I [∆
(k)
C ] · p̂r∗I

(
∆

(n−k)
C,∗ (ξ)

)
,

where again the inner sum runs over the subsets I ⊂ {1, . . . , n} of cardinality k, and where
we recall that p̂rI : C

n → Cn−k denotes the projection onto the factors indexed by the
complement of I. The difference with the classes Γn(C, ξ) is that we are replacing all
occurences of terms ξ × · · · × ξ (m factors, say) by ∆

(m)
C,∗ (ξ). Clearly, if ξ is a point, this

makes no difference, so in that case An(C, ξ) is the same as Γn(C, ξ). More generally, we
have An(C, ξ) = Γn(C, ξ) whenever ∆C,∗(ξ) = ξ × ξ. We have A2(C, ξ) = B2(C, ξ) =

Γ2(C, ξ) = [∆C ]− [C × ξ]− [ξ × C], and

A3(C, ξ) =
[
∆

(3)
C

]
−

(
[∆C ]× ξ

)︸ ︷︷ ︸
+ permutations

+
(
[C]×∆C,∗(ξ)

)︸ ︷︷ ︸
+ permutations

∈ CH1(C
3) .

A nice feature of this variant is that An(C, ξ) is ‘linear in the class ξ’, by which we mean
that if ξ =

∑r
i=1 mi · xi then

An(C, ξ) =
r∑

i=1

mi ·An(C, xi)

as classes in CH1(C
n).

3.12. Problem 4. Show that A3(C, ξ) = 0 if and only if Γ3(C, ξ) = 0. How about higher
values of n ? Does the vanishing of An(C, ξ) imply the vanishing of either Bn(C, ξ) or
Γn(C, ξ), or the other way around? Does the vanishing of An(C, ξ) imply the vanishing of
An+1(C, ξ) ?

3.13. Finally, we come to a question for which I don’t even know what to expect. As we
have seen, if we use a base point x0 ∈ C(k) to embed C into its Jacobian then the vanishing
of Γn(C, x0) for some n ≥ 3 is equivalent to the vanishing of the component [C](n−2) of the
curve class. (And, once again, in this case An = Bn = Γn.) On the other hand, we have
seen that Γ3(C, x0) can only vanish if (2g− 2) ·x0 is the canonical class, and while this may
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happen (hyperelliptic curves, plane quartic curves with a hyperflex, ...), this condition is
very restrictive. It is for this reason that we want to consider a more general setup, allowing
a class ξ ∈ CH0(C)deg=1 instead of a base point. Many results in the literature (or at
least their proofs) are no longer valid in that setting. Further, we now have (at least) three
candidates for the modified diagonal classes, and it is not at all clear which of the three has
the best properties. Does one of the three versions have the property that the vanishing of
the nth modified diagonal class is equivalent to the vanishing of the class Cξ,n ∈ CH1

(
hn(J)

)
as in Section 3.5? It would be great to understand this better.
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