
THE TORELLI LOCUS AND NEWTON POLYGONS
AWS 2024: COURSE AND PROJECT OUTLINE

RACHEL PRIES

This lecture series is about the Torelli locus in the moduli space of abelian varieties, with
applications to Newton polygons of curves in positive characteristic. In general, the lectures
will cover two topics: the first is about the geometry of the Torelli locus; the second is about
the arithmetic invariants of abelian varieties that occur for Jacobians of smooth curves in
positive characteristic.

This is a preliminary document which will be expanded and refined later. In particular, a
more complete bibliography will be provided at a later time.

1. The Torelli locus

Let g be a positive integer. Suppose X is a (smooth, projective, connected) curve of
genus g. The Jacobian JX of X is the quotient of the group of divisors of degree zero by the
subgroup of principal divisors. One can show that the Jacobian JX is a (principally polarized)
abelian variety of dimension g. Many facts about X are determined by its Jacobian; for
example, the unramified cyclic degree ` covers of X are determined by `-torsion points on
the Jacobian JX .

For 1 ≤ g ≤ 3, almost every abelian variety is a Jacobian. For example, an abelian variety
of dimension g = 1 is an elliptic curve. An abelian surface (resp. threefold) is the Jacobian
of a smooth curve of genus 2 (resp. 3) unless it decomposes as a product, together with the
product polarization.

For g ≥ 4, the situation is more interesting because not every abelian variety is a Jacobian.
There are several methods to determine which abelian varieties are Jacobians but these are
fairly difficult. It is often possible to study Jacobians of curves in a more explicit and concrete
way than for a typical abelian variety. On the other hand, there are techniques for studying
families of abelian varieties that do not apply when studying families of Jacobians of curves.
This leads to a very valuable and rewarding exchange between these topics.

Consider the moduli space Ag of principally polarized abelian varieties of dimension g.
Within Ag, we can consider the Torelli locus whose points represent Jacobians of curves.
This sublocus of Ag has essential importance and plays an important role in many problems.
Let Mg denote the moduli space of (smooth, projective, connected) curves of genus g. The
Torelli morphism τ :Mg → Ag takes a curve X to its Jacobian. It is an embedding, meaning
that X is uniquely determined by JX . The open Torelli locus T ◦

g is the image of τ ; it is the
locus of all principally polarized abelian varieties of dimension g that are Jacobians.

When g = 1, 2, 3, then T ◦
g is open and dense in Ag, meaning that almost every principally

polarized abelian variety of dimension g ≤ 3 is a Jacobian. For g ≥ 2, the dimension of Mg

is 3g − 3, while the dimension of Ag is g(g + 1)/2. So, as g increases, the open Torelli locus
has increasingly high codimension in Ag.
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2. The boundary

Surprisingly, some facts about smooth curves can be proven using singular curves; some
facts about principally polarized abelian varieties that are indecomposable can be proven
using principally polarized abelian varieties that decompose. For this reason, it is useful to
consider compactifications of these moduli spaces, namely the Deligne–Mumford compacti-
fication Mg of Mg and the toroidal compactification Ãg of Ag.

The points of the boundary of Mg represent stable singular curves, which are either of
compact or non-compact type. When the dual graph of a curve is a tree, we say that the
curve has compact type. To construct a singular curve of compact type, we take two curves,
choose a point on each, and identify these in an ordinary double point. If g1 + g2 = g, this
yields a morphism:

κg1,g2 :Mg1;1 ×Mg2;1 →Mg.

The Jacobian of a singular curve of compact type is an abelian variety, although it does
decompose together with the product polarization.

To construct a singular curve of non-compact type, we take a curve, choose two points on
it, and identify these in an ordinary double point. This yields a morphism:

κ0 :Mg−1;2 →Mg.

The Jacobian of a singular curve of non-compact type is a semi-abelian variety. Later
notes will include more description of semi-abelian varieties, including the toroidal rank of a
semi-abelian variety and the toroidal compactification Ãg. We extend the Torelli morphism

τ :Mg → Ãg.
Historically, many statements about the geometry of Mg use the morphisms κg1,g2 , κ0,

which are called clutching morphisms. The Torelli map extends to a map τ : Mg → Ãg.
However, τ is no longer an embedding; in fact, some of its fibers have positive dimension.

3. Arithmetic invariants

Over a field of positive characteristic p, an elliptic curve can be ordinary or supersingular.
We say that an elliptic curve is ordinary if it has point of order p; alternatively, an elliptic
curve is ordinary if its Newton polygon has slopes of zero and one. Otherwise, the elliptic
curve is supersingular. There are many results about ordinary and supersingular elliptic
curves, due to Deuring [Deu41] and Igusa [Igu58]; for example, for a fixed prime p, most
elliptic curves are ordinary and the number of isomorphism classes of supersingular elliptic
curves is approximately p/12. See also [Man61].

In positive characteristic, the action of Frobenius determines important information about
an abelian variety. To keep track of this information, there are combinatorial invariants
called the p-rank, Newton polygon, the Ekedahl–Oort type, and the a-number. For an
abelian variety A, the p-rank is the integer f such that the number of p-torsion points on
A equals pf . The Newton polygon is the Newton polygon of the L-polynomial, which is the
characteristic polynomial of Frobenius on the crystalline cohomology; when A = JX for a
curve X, the Newton polygon keeps track of the number of points on X defined over finite
fields of characteristic p. The Ekedahl–Oort type is an invariant that classifies the structure
of the p-torsion group scheme A[p] of A; when A = JX , this is the same as the structure
of the de Rham cohomology as a module under Frobenius F and Verschiebung V . The
a-number is the number of generators of A[p] as a module under F and V .
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The possibilities for the Newton polygon and Ekedahl–Oort type of an abelian variety
are well understood. In contrast, in most cases it is not known which Newton polygons and
Ekedahl–Oort types occur for Jacobians of curves for a given prime p. Some Newton polygons
and Ekedahl–Oort types have been shown to occur for Jacobians and some Ekedahl–Oort
types have been ruled out. More generally, the stratifications of Ag by these invariants
are well understood; however, it is not understood how these stratifications intersect the
Torelli locus. As applications of the theory covered in this lecture series, I will show how the
geometric techniques used to study moduli spaces can shed light on these questions.

Lectures:
Here is a tentative schedule of lectures. These lectures are about abelian varieties defined

over an algebraically closed field. The first half of each lecture includes material that makes
sense for fields of any characteristic; the second half of each lecture includes applications for
abelian varieties in positive characteristic.

(1) The Torelli locus and arithmetic invariants
In the first half of this lecture, I will give several descriptions of the Torelli locus

in the moduli space Ag of abelian varieties of dimension g. With a dimension count,
we can see that the Torelli locus is open and dense inside Ag when 1 ≤ g ≤ 3, and
has positive codimension for g ≥ 4.

In the second half of this lecture, I will describe some arithmetic invariants of
abelian varieties in positive characteristic p. These include: the p-rank, the Newton
polygon, the Ekedahl–Oort type, and the a-number, see [Pri19] for a survey. As some
applications, we can see the proofs of these facts, for every prime p:
(i) there exists an ordinary smooth curve of every genus g, [Mil72];
(ii) there exists a non-ordinary smooth curve of every genus g; and
(iii) there exists a supersingular curve of genus 2 [Ser83], [IKO86].

The proofs make use of the Cartier operator.

(2) The boundary of the moduli spaces of curves and abelian varieties
In the first half of this lecture, I will describe the boundary of the moduli space

of curves and the clutching morphisms, as described in Section 2. The boundary is
the image of the clutching morphisms, whose domain consists of products of moduli
spaces of curves with marked points. Then we will cover some results of Diaz [Dia84]
and Looijenga [Loo95] that show that a subspace S ⊂ Mg having codimension at
most g must intersect the boundary.

In the second half of this lecture, I will describe the purity result of de Jong and
Oort [dJO00] for the Newton polygon stratification of Ag. As an application, for
every prime p, this yields a proof that there exists a supersingular curve of genus
3 [Oor91], and a supersingular curve of genus 4 [KHS20], [Pri]. We will see that this
proof does not extend to curves of higher genus.

(3) Special families of abelian varieties
In the first half of this lecture, I will describe the situation for abelian varieties

having additional structure; namely, whose automorphism group contains a cyclic
group. The moduli spaces of these provide examples of Deligne–Mostow Shimura
varieties. We say this moduli space is special if an open and dense subset of a
component of the Shimura variety is contained in the Torelli locus. In particular, we
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consider families of Jacobians of curves that are cyclic covers of the projective line.
The families that have special moduli spaces were classified by Moonen [Moo10]. The
situation for Jacobians of abelian covers of the projective line is not fully understood
and is related to a conjecture of Coleman and Oort.

In the second half of this lecture, I will describe constraints on the Newton polygon
and Ekedahl–Oort type of an abelian variety in these special families. As an appli-
cation, this shows that there exist supersingular curves of genus 5, 6, and 7, under
certain congruence conditions on the prime p [LMPT19]. Furthermore, I will describe
the rate of growth of the number of non-ordinary curves in these families [CP].

(4) Inductive systems of moduli spaces of curves
In the first part of this lecture, I will describe inductive systems of moduli spaces of

curves. Via the clutching morphisms, it is possible to study moduli spaces of curves
by induction on the genus. Similarly, there are inductive systems of moduli spaces of
curves that are cyclic covers of the projective line. However, it is a delicate problem
to preserve arithmetic properties of the Jacobians of the curves when deforming away
from the boundary.

In the second half of this lecture, I will explain how this technique can be used to
study the p-rank stratification ofMg [FvdG04]. If time permits, we will see how the
p-torsion and the `-torsion are independent of each other, in a way that can be made
precise using `-adic monodromy groups of the p-rank stratification [AP08].

Projects:
Any information on these problems will lead to progress on more general open questions.

Currently, for accessibility, they are written for special cases in which the answer is unknown.
The problems will be described in more detail later.

(1) (Computational) Determine geometric properties of strata of the moduli space M4

(such as the non-ordinary locus, p-rank 0 locus, and supersingular locus) by counting
the number of isomorphism classes of curves with given invariants over a finite field.

(2) (Computational) For 5 ≤ g ≤ 10, determine the Newton polygons and Ekedahl–Oort
types whose strata have codimension at most g, have codimension at most 3g − 3,
and/or do not occur on the boundary of Mg.

(3) Determine the intersection of the supersingular locus of M3 with the boundary of
M3; similar question for the hyperelliptic locus H3. Generalize to M4.

(4) For one-dimensional special families of abelian (non-cyclic) covers X → P1: find the
Newton polygons and Ekedahl–Oort types that occur for curves in these families; for
primes such that the generic curve in the family is ordinary, find the rate of growth
of the number of non-ordinary curves in the family.

(5) Study the p-rank stratification of the moduli space of double covers of a fixed elliptic
curve with 2n branch points.
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Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 247–284. MR 1085262

[Pri] Rachel Pries, Some cases of Oort’s conjecture about Newton polygons,
https://arxiv.org/abs/2306.11080.

[Pri19] , Current results on Newton polygons of curves, Open problems in arithmetic algebraic
geometry, Adv. Lect. Math. (ALM), vol. 46, Int. Press, Somerville, MA, [2019] c©2019, pp. 179–
207. MR 3971184

[Ser83] Jean-Pierre Serre, Nombres de points des courbes algébriques sur Fq, Seminar on number theory,
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