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Course Summary:
Height functions are used to measure the arithmetic (number theoretic)
complexity of objects that are of interest to number theorists and arith-
metic geometers. Very roughly,1 you might think of the height of an
object O as

h(O) = number of bits it takes to store O on a computer.

Heights are used to prove finiteness results by showing that all of the
objects in a set of objects have bounded height. They are also used to
study the size of infinite sets of objects S by analyzing the growth rate
of the height counting function

N(S, T ) = #
�
O 2 S : h(O)  T

 
.

We will be particularly interested in height functions on the set of
points of an abelian variety. Thus let K/Q be a number field, and
let A/K be an abelian variety. We start with height functions

h : A(K) �! [0,1[

that measure the arithmetic complexity of the points of the Mordell–
Weil group A(K), and we will show that h interacts reasonably nicely
with the group law on A. For example, the height h satisfies an ap-
proximate duplication formula

h(2P ) = 4h(P ) + (quantity bounded independent of P ).
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1The “very roughly” means that we won’t worry about scaling. So for example,

people usually define the height of a rational number a/b 2 Q written in lowest
terms to be h(a/b) = logmax

�
|a|, |b|

 
, even though it takes log2 |a| + log2 |b| + 1

bits to store a and b and a sign bit.
1
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That’s all well and good, but the “quantity bounded independent of
P” is annoying! Following Néron and Tate, we will use h to construct
a canonical height

ĥ : A(K) �! [0,1[.

The canonical height ĥ di↵ers from h by a bounded amount, which
means that ĥ still measures arithmetic complexity, but ĥ satisfies an
exact duplication formula

ĥ(2P ) = 4ĥ(P ).

Even better, the canonical height ĥ extends to give a positive definite
quadratic form

ĥ : A(K)⌦ R ⇠= RrankA(K)
�! [0,1[,

and A(K)/A(K)tors sits as a lattice (discrete subgroup) of the real
vector space RrankA(K). This means thatw we now have at our disposal
all of the wonderful tools from the theory of lattices in Rn to study the
group of rational points A(K).

Lecture 1: Construction and properties of canonical heights
We will construct Weil height functions on projective space PN(K)

and its subvarieties, and we will descibe some reasonably nice trans-
formation properties that Weil heights have relative to morphisms
f : X ! Y of projective varieties. For example, on PN we have the
relation

h
�
f(P )

�
= deg(f) · h(P ) + (quantity bounded independent of P ).

We will use the Weil height on an abelain variety A to construct a
canonical height ĥA whose transformation formulas relative to isoge-
nies A ! A no longer require the “quantity bounded independent of
P” error term.

Lecture 2: Applications; Local canonical heights
We will start with an application of the theory of canonical heights

to the height counting function. Let A/K be an abelian variety defined



Canonical Heights 3

over a number field, and let r = rankA(K) be the rank of its Mordell–
Weil group. Then we will prove that2

N
�
A(K), T

�
:= #

�
P 2 A(K) : ĥ(P )  T

 

= ↵(A/K) · T r/2 +O(T (r�1)/2) as T ! 1.

We next turn to the local decomposition of the canonical height.
Although the theory of local canonical heights is a bit technical, it is
an invaluable tool. For each place v of K, let Kv denote the completion
of K at v. Then the local canonical height associated to v is a v-adically
continuous function3

�̂v : A(Kv) �! R
that satisfies a quasi-duplication formula of the form

�̂v(2P ) = 4�̂v(P ) + log
��F (P )

��
v
+ cv,

where the function F 2 K(A) does not depend on v and the constant cv
does not depend on P . This allows us use analytic tools to study the
individual local canonical heights �̂v, and then use the formula

ĥ(P ) =
X

v

�̂v(P ) + (constant independent of P )

to deduce information about the global canonical height ĥ.

Lecture 3: Lower bounds for canonical heights
Let A/K be an abelian variety defined over a number field. The ca-

nonical height ĥ : A(K) ! [0,1[ has the following agreeable property:

ĥ(P ) = 0 () P is a torsion point.

This raises the question of how small ĥ(P ) can be if P is not a torsion
point, or in more evocative language:

What is the smallest possible arithmetic complex-
ity of a non-torsion point on an abelian variety?

2Proving this formula was one of Néron’s motivations in constructing canonical
heights.

3We are cheating here, and in a fairly serious way, since �̂v is really only de-
fined on a Zariski open subset U ⇢ A, and �̂v has a logarithmic singularity as P
approaches the v-adic boundary of U(Kv) in A(Kv). However, we’ve also under-
sold �̂v in the case that v is archimedean, since in that case �̂v is not merely
continuous, it is a real-analytic function on a Zariski open subset of A(C).



4 Joseph H. Silverman

This question actually comes in two flavors: we can fix the abelian
variety and vary the field, or we can fix the field and vary the abelian
variety. These two directions lead to (generalizations) of two famous
conjectures:

• [Lehmer Conjecture] Fix the abelian variety A/K. How small
can ĥ(P ) be as a function of the degree

⇥
K(P ) : K

⇤
of the field

generated by the coordinates of P , as P ranges over all non-torsion
points P 2 A(K̄). One might hope for an answer of the form

ĥ(P ) �
C(A/K)⇥
K(P ) : K

⇤✏

for some small value of ✏. The best possible value would be ✏ =
1/ dim(A). The best known value is a small multiple of dim(A).

• [Lang Conjecture] Fix the field K. How small can ĥ(P ) be as
a function of the complexity of A, as A/K ranges over all abelian
varieties defined over K and P ranges over all non-torsion points
of A(K). One might hope for an answer of the form

ĥ(P ) � c1(K)h(A/K)� c2(K),

where h(A/K) measures the arithmetic complexity of the abelian
variety A.

In this lecture I’ll describe these conjectures, as well as the classical
Lehmer conjecture for Q̄⇤, discuss some of the known results, and as
time permits, sketch one or more of the proof methods used to tackle
these sorts of height lower bound problems.

Lecture 4: Canonical heights in families; Specialization theo-
rems

In this lecture we look at families of points Pt on families of abelian
varieties At and study how the canonical heights ĥ(Pt) vary as a func-
tion of the parameter t. For concreteness, here’s an example of a family
of points on a family of elliptic curves:

Et : y
2 = x3

� (t2 � t)x+ 2t+ 1, Pt = (t, t+ 1).

More generally, we look at a family of abelian varieties parameterized
by a curve,

A �! C, and a family of points P : C �! A.

The family of points P may be viewed as a single point P 2 A
�
K(C)

�

defined over the function field of C, so P has a an associated func-
tion field canonical height ĥ(P ). Then, for each point t 2 C(K̄), we
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get a point Pt on the abelian variety At(K̄) that has its canonical
height ĥ(Pt). Finally, we can fix a height function on the points C(K̄)
of the curve C. Our goal in this lecture is to sketch a proof of the limit
formula

lim
t2C(K̄)
h(t)!1

ĥ(Pt)

h(t)
= ĥ(P ).

We will then explain how the limit formula implies that the special-
ization map

A(C) �! At(K̄), P �! Pt,

is injective except for a set of points t 2 C(K̄) of bounded height.
As time permits, we will discuss the general philosophy of “unlikely
intersections,” which predicts that if dim(A) � 2, then the set of ex-
ceptional t 2 C(K̄) is not merely of bounded height, but is actually
finite.

Project 1: Trace relations on abelian varieties
Let A/K be an abelian variety defined over a field K, and let L/K

be finite a Galois extension with Galois group G(L/K). Then we can
define a trace map from A(L) to A(K) by the adding up the Galois
conjugates of a point,

TraceA,L/K : A(L) �! A(K), TraceA,L/K(P ) =
X

�2G(L/K)

�(P ).

In this project we will investigate this trace map. There are many
natual questions, for example:

(a) Find a criterion for when TraceA,L/K is surjective. We may con-
sider this problem when K is a number field, a function field, a
local field such as Qp, or a finite field.

(b) Let K be a number field or function field, and suppose that

TraceA,Lv/Kv : A(Lv) �! A(Kv)

is surjective for every completion of L/K. Does this imply that
TraceA,L/K is surjective? If not, what are some obstructions, and
is their vanishing su�cient to ensure surjectivity.

(c) Work on questions (a) and (b) for quadratic extensions, i.e., ex-
tensions L/K with [L : K] = 2. We note that this case may be
easier to handle, since there is a “twist abelian variety” A�/K so
that

A(L) = A(K)� A�(K).
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(d) What, if anything, can we say whe we combine the trace map and
the canonical height function,

A(L) �! R, P 7�! ĥA,D

�
TraceA,L/K(P )

�
?

Or we might consider the map

A(L) �! R, P 7�! det
⇣⌦

�(P ), ⌧(P )
↵
A,D

⌘

�,⌧2G(L/K)
,

where h · , · iA,D is the canonical height pairing. This map is quite
interesting, since if D is ample and symmetric, then it sends P to 0
if and only if the set of Galois conjugates

�
�(P ) : � 2 G(L/K)

 

is Z-linearly dependent.

Project 2: Northcot and Bogomolov fields for abelian varieties
Let K/Q be a number field, let A/K be an abelian variety, and

let ĥA,D be the canonical height on A relative to an ample symmetric
divisor. In this project we investigate the group A(L) over exten-
sions L/K of infinite degree.
Definition: The field L has the Northcott Property for A/K if

�
P 2 A(L) : ĥA,D(P )  B

 
is finite for all B � 0.

Definition: The field L has the Bogomolov Property for A/K if there
exists a constant c(A,D,L) > 0 such that every P 2 A(L) satisfies
either

ĥA,D(P ) = 0 or ĥA,D(P ) � c(A,D,L).

One can show that the Northcott property implies the Bogomolov
property. In this project we will look for abelian varieties and fields
that satisfy these properties. For example, the Bogomolov property is
known if we take L = Kab to be the maximal abelian extension of K,
i.e., if K(P )/K is a Galois extension with abelian Galois group. Can
we prove the Bogomolov property if K(P )/K is a solvable extension?
Or we might look at weakened versions of the two properties, for ex-
ample allowing the lower bound in the Bogomolov property to depend
on

⇥
K(P ) : K

⇤
in some explicit way. This leads to abelian variety

versions of the Lehmer conjecture (see Lecture 3 and Project 3), which
we might investigate for various types of abelian varieties A/K and
various types of extensions L/K.
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Project 3: Experimental investigations of Lehmer’s conjecture
for elliptic curves

Let K/Q be a number field, let A/K be an abelian variety, and
let ĥA,D be the canonical height on A relative to an ample symmetric
divisor. Then for points P 2 A(K̄), we have

ĥA,D(P ) = 0 () P 2 Ators.

The Lehmer conjecture for abelian varieties gives an estimate for how
small ĥA,D(P ) can be if P is not a torsion point. The strongest version
says that there is a constant c(A,D) > 0 so that

ĥA,D(P ) �
c(A,D)

⇥
K(P ) : K

⇤1/ dim(A)
for all P 2 A(K̄)r Ators.

The classical Lehmer conjecture is a similar statement for the mul-
tiplicative group. It asserts that there is an absolute constant c > 0 so
that

h(↵) �
c⇥

Q(↵) : Q
⇤ for all ↵ 2 Q̄⇤ that are not roots of unity.

There is a lot of data available for the classical Lehmer conjecture,
including a conjectural value for the best possible c. But as far as
I am aware, there are no comparable computations for any elliptic
curve, much less a higher dimensional abelian variety. In this project
we’ll choose a convenient elliptic curve E/Q and search for non-torsion
points P 2 E(Q̄) of small degree such that d(P )ĥE(P ) is small. This
will include using the local decomposition of the canonical height,

ĥE(P ) =
X

�̂E,v(P ),

and explicit formulas/series for the local heights �̂E,v. (To some extent,
we may be able to use pre-programmed versions of �̂E,v, especially
for E(R) and E(C), in Sage, Magma, PARI-GP, etc.)

As a side project, it may be useful to develop an explicit estimate of
the following form: For E/Q and non-torsion P 2 E(Q̄), let K = Q(P )
and d = [K : Q]. Find explict constants C1(d) > 0 and C2(d, E) � 0
so that

ĥE(P ) � C1(d) · log
��Disc(K/Q)

��� C2(d, E).

We’ll want to make C1(d) as large as possible and C2(d, E) as small as
possible.
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