
ABELIAN VARIETIES OVER FINITE FIELDS:
PROBLEM SET 6
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AND MINGJIA ZHANG

Instructions: The goal of this problem set is to understand the proof of Honda-Tate theory
and to see some applications. Problems marked (⋆), (⋆⋆), and (⋆ ⋆ ⋆) denote beginner,
intermediate, and advanced problems, respectively.

Notation: As customary, p will be a prime, and q will be a power of p.

Let E be an elliptic curve over Fq. By the Honda–Tate theorem, E corresponds to a
q-Weil number α1, whose conjugacy class is completely determined by its trace a = α1 +
α1 ∈ [−2√q, 2√q] ∩ Z. In the following problems, we will characterize the possible traces
that appear in the image of the Honda–Tate map. Good complementary references are
[EVdGM12], [Wat69], [Ser20], Bao’s notes, and Papikian’s notes.

First, we consider the case of ordinary elliptic curves.

Problem 1 (⋆⋆)
Let q = pn. Let E be an elliptic curve over Fq and let a = tr(ϕq) = α1 + α1 be the trace
of the q-Frobenius. Show that the following are equivalent.

(1) E is ordinary,
(2) gcd(a, q) = 1, and
(3) K := Q(α1) is an imaginary quadratic field over which p splits.

If this is the case, show that α1OK = pn for a prime ideal p.

The following problem makes use of the theory of complex multiplication of elliptic curves.
Good complementary references are [Sil94, Chapter II], and Li’s PAWS lecture notes; espe-
cially Lecture 5.

Problem 2 (⋆⋆)
Let a ∈ Z lie in the interval |a| ≤ 2

√
q. Assume that gcd(a, q) = 1. In this problem, we

will provide a roadmap to provea that there exists an ordinary elliptic curve E defined
over Fq such that the trace of the Frobenius endomorphism ϕq : E → E is equal to a.

(1) Let P (T ) = T 2 − aT + q = (T − α)(T − α). Denote by K the number field generated
by P (T ). Show that K = Q(α) is quadratic imaginary, and that p splits in K.

(2) Consider the ring of integers OK of K as a lattice in C. Define the complex elliptic
curve C/OK , and argue that End(C/OK) ∼= OK has complex multiplication.

(3) From the theory of complex multiplication, we know that there exists a number field
Hb and an elliptic curve Ẽ defined over H, such that ẼC ∼= C/OK .
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(4) For any place w | p of H, consider Ẽ over the local field Hw. The fact that j(Ẽ) is
an algebraic integer implies that Ẽ has potentially good reduction at w. Thus, there
exists some finite extension H ′

w/Hw such that ẼH′
w
has good reduction. Use [Sil09,

VII.5.4] to show there exists some intermediate local field Hw ⊂ Fw ⊂ H ′
w′ such that

H ′
w′/Fw is unramified, and Fw/Hw is totally ramified, to conclude that ẼFw also has

good reduction.
(5) Let E be the reduction of Ẽ/Fw modulo the prime. Then E is defined over k(w),

which is the residue field of Hw at w. Let v be the restriction of w to K. Let p
be the prime in K above p corresponding to v. Let Cl(K) denote the class group of
K and Frobp be the element in Gal(H/K) corresponding to the prime idealc p. Use
Problem 1 part (3), show that the order of Frobp in Cl(K) divides n. Conclude that
[k(w) : k(v)] | n and that k(w) ⊆ Fq. Consequently, E is defined over Fq.

(6) Reducing the curve Ẽ/Kw at w yields an ordinary elliptic curve E defined over Fq.

The map End(ẼKw)→ End(E) is injective and preserves degrees [Sil94, II, Proposition
4.4]. Verify that α maps to the q-Frobenius endomorphism of E.

aWithout appealing to the Honda–Tate theorem.
bIn fact H can be taken to be the Hilbert class field of K, and we have in particular Gal(H/K) ∼= Cl(K).
cWe have Gal(k(w)/k(v)) ∼= Gal(Hw/Kv) ↪→ Gal(H/K). Frobp is the image of the Frobenius in
Gal(k(w)/k(v)). Under the isomorphism Gal(H/K) ∼= Cl(K), Frobp goes to p.

Next, we move on to the supersingular case. We first classify the a ∈ Z such that can
possibly arises as trace of the Frobenius for a supersingular elliptic curve E/Fq.

Problem 3 (⋆⋆)
Let q = pn. Let E be an elliptic curve over Fq and let a = tr(ϕq) = α1 + α1 be the trace
of the q-Frobenius. Suppose E is supersingular, and denote let K = Q(α1). Show that
there are only three possibilities for a:

(1) K = Q and α1 = ±pn/2 where n is even. In this case, show that a = 2
√
q.

(2) K is an imaginary quadratic field, p ramifies in K as pOK = p2, and α1OK = pn. In
this case, show that:
(a) n is odd and a = 0,
(b) n is even, p = 2, and a = 0,
(c) n is even, p = 3, and a = ±√q,
(d) n is odd, p = 2, and a =

√
2q,

(e) n is odd, p = 3, and a =
√
3q.

(3) K is an imaginary quadratic field, p is inert in K, and α1OK = pn/2 where n is even.
In this case, show that:
(a) n is even, p ≡ 3 mod 4, and a = 0,
(b) n is even, p ≡ 2 mod 3, and a = ±√q.

Next, we construct corresponding supersingular elliptic curve for the a in Problem 3.
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Problem 4 (⋆⋆)
In this problem, we construct a supersingular elliptic curve defined over Fq where the
characteristic polynomial of ϕq is equal to T 2−aT + q, for each a in the list of Problem 3.

(1) Suppose a < 2
√
q. Let α be a root of T 2 − aT + q. Let K := Q(α). Since a < 2

√
q,

we know that K is a quadratic imaginary extension over Q. Furthermore, p either
ramifies or is inert in K. Let v be the valuation on K corresponding to the unique
prime p in K above p. Let H be the Hilbert class field of K and let w be a place of
H above v.
(a) Follow the construction in part (1)–(5) in Problem 2, obtain an elliptic curve

Ẽ/Fw, where Fw is some totally ramified extension of Hw, and Ẽ/Fw has good
reduction at w.

(b) Let E be the reduction of Ẽ/Fw modulo the prime. Follow the same argument
as in part (5) of Problem 2, use the results in Problem 3 part (2) and (3), show
that the order of Frobp in Cl(K) divides n. Conclude that [k(w) : k(v)] | n and
that k(w) ⊆ Fq. Consequently, E is defined over Fq.

(c) Let ϕq be the Frobenius endomorphism of E/Fq. Show that Q(ϕq) ⊆ K. Use
PSET2, Problem 9, show that if Q(ϕq) = Q, then E/Fq must be supersingular.

(d) Now suppose Q(ϕq) = K. Then we know that p is ramified or inert in Q(ϕq).
Deduce that in this case E/Fq is supersingular as well.

(e) Show that in both cases, we have (ϕq) = (α) or (ᾱ) as ideal in K. From the fact
that K is a quadratic imaginary field, conclude that ζϕq = α or ζᾱ, where ζ is a
root of unity of order 1, 2, 3, 4, 6.

(f) Suppose ζϕq = α. We want to find E ′/Fq supersingular such that πE′ = α or ᾱ.
Let Eζ/Fq be the twist of E by ζa. It has the property that if for the ℓ-adic Galois

representation of E, ρ : Gal(Fq/Fq)→ Vℓ(E), ρ(Frobq) has eigenvalues α, ᾱ, then

the ℓ-adic Galois representation of Eζ , ρ : Gal(Fq/Fq) → Vℓ(Eζ) has eigenvalues
ζα, ζ−1ᾱ. Show that for this Eζ , πEζ

= α or ᾱ, and hence Eζ is supersingular.
This finishes the construction of a supersingular elliptic curve E/Fq whose trace
is equal to the a that we started with.

(2) Now suppose a = 2
√
q, in which case n is even, and π = ±q n

2 .
(a) Apply the above construction to a = 0 and q = p, obtain a supersingular elliptic

curve E/Fp such that ϕq = ±i
√
p.

(b) Let E/Fq be the base extension of E to Fq. Show that ϕq = ±i
n
2 p

n
2 . Then choose

a twist Eζ such that πEζ
= p

n
2 .

aFor the existence of this twist, see [Bao, page 4-5].

Now we can characterize the q-Weil numbers that appear as the image of isogeny classes
of elliptic curves under the Honda-Tate map. We say that a q-Weil number α is elliptic if
Q(α) = Q or Q(α) is an imaginary quadratic field and there is only one finite place where α
has a positive valuation.
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Problem 5 (⋆)
Let α be a q-Weil number. Conclude from the problems above that α is elliptic if and
only if α is an image of an isogeny class of elliptic curves under the Honda-Tate map.

The next problem is an application of Honda-Tate theory to a conjecture of Manin about
Newton polygons.

Problem 6 (⋆)
Fix a prime p. In [Man63, Conj. 2, p.76], Manin conjectured that for any admissiblea

Newton polygon N , there exists an abelian variety A defined over a field of characteristic
p such that N (A) = N .
We can prove this conjecture using Honda-Tate theory.

(1) Any Newton polygon of total length h can be written as the sum of h line segments,
each written in the form (c, d) where gcd(c, d) = 1, indicating a slope of c/(c+ d). So
an admissible Newton polygon can be written as

N = t · ((1, 0) + (0, 1)) + s · (1, 1) +
∑
i

((di, ci) + (ci, di))

for t, s ∈ Z≥0. Verify that it suffices to show that there exist abelian varieties A,A′

such that N (A) = (1, 0)+(0, 1) and N (A′) = (1, 1), and for any (c, d) relatively prime,
there exists Ac,d such that N (Ac,d) = (c, d) + (d, c).

(2) Let E be an elliptic curve over the finite field Fpn . Use the characteristic polynomial
of the pn-Frobenius to determine what the possible Newton polygons are.b

(3) Suppose we want to find an abelian variety A whose Newton polygon is of the form
(d, c) + (c, d) where c, d are coprime integers with d > c > 0. Write down a quadratic
polynomial whose roots are pc+d-Weil numbers and have p-adic valuation c and d. By
Honda–Tate theory, this Galois-conjugacy class of pc+d-Weil numbers corresponds to
a simple abelian variety A over Fpc+d .

(4) Let F denote the splitting field of the quadratic polynomial from part (3). Use F and
Theorem 12.9 (main theorem) in the lecture notes to compute the invariants invv(D)
of D := End0

F
pc+d

(A).

(5) For any number field F , the following exact sequence holds.c

0→ Br(F )→
⊕
v∈MF

Br(Fv)→ Q/Z→ 0

where the direct sum is over all finite and infinite places of F . Fv denotes the comple-
tion with respect to the place v. The first map is given by extension of scalars, and
the second map is given by summing the invariants. Recall that for local fields Fv,
invv : Br(Fv)

∼−→ Q/Z. Use this exact sequence to check
• that an element [D] ∈ Br(F ) is uniquely determined by invv(D) for all v ∈ MF ,
and
• that the order of an element of Br(F ) is the least common multiple of the de-

nominators in its image in
⊕

v∈MF
Br(Fv)

⊕v invv−−−−→
∼

⊕
v∈MF

Q/Z.
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(6) For a central division algebra D over a number field F , the order of [D] in Br(F )

is
√
[D : F ].d Combine this fact with parts (4) and (5) to compute [D : F ] for

D = End0
F
pc+d

(A).

(7) Use Theorem 12.9 from the lecture notes to determine dimA.
(8) Let n = c + d. Let hA(T ) be the minimal polynomial of the pn-Weil number from

part (3) above. Use the fact that PA(T ) = hA(T )
e for e =

√
[D : F ] to check that the

Newton polygon N (A) is indeed length 2n of the form n((d, c) + (c, d)).

aAdmissible Newton polygons are defined in Problem 2 on PSET 5.
bHint: Consider the ordinary and supersingular cases separately.
cSee Theorem 3.5 of these notes for more explanation about Brauer groups over global fields.
dSee Theorem 3.6 of these notes.

The following exercise, due to Bjorn Poonen [Poo06, Problem 4.10], will apply Honda-Tate
theory to understand ordinary abelian varieties. In particular, in the ordinary case we have
that the isogeny class of A is in 1-1 correspondence with the Frobenius polynomial PA(T ).

We say that a g-dimensional abelian variety A/Fq is ordinary if half of the zeros of PA(T )
in Q̄p are p-adic units, and the other half have q-valuation1 1.

Problem 7 (⋆)
Let A be a simple ordinary abelian variety over Fq. Write the characteristic polynomial of
Frobenius as PA(T ) = hA(T )

e, where hA(T ) ∈ Z[T ] is the (irreducible) minimal polynomial
of the corresponding q-Weil number.

(1) Show that hA(T ) has no real zeros.a

(2) Prove that e = 1.b

aHint: Use Problem 8 on PSET 4.
bHint: Use the facts relating order and dimension of division algebras in Brauer groups from Problem 6.

We say that A/Fq is supersingular if all the zeros of PA(T ) in Q̄p have q-valuation 1/2.

Problem 8 (⋆⋆)
Let A be a g-dimensional abelian variety defined over Fq, with Frobenius eigenvalues
α1, . . . , α2g ∈ C. For j = 1, . . . , 2g, let uj := αj/

√
q ∈ S1 = {u ∈ C : |u| = 1} ⊂ C× be

the corresponding normalized eigenvalues. Define the angle group of A to be the subgroup
UA ⊂ S1 generated by the normalized Frobenius eigenvalues of A, and define the angle
rank δA of A to be the rank of the finitely generated abelian group UA.

(1) Show that δA ∈ {0, 1, 2, . . . , g}.
(2) Show that if g = 1, A is ordinary if and only if δA = 1. Conclude thatA is supersingular

if and only if u1 is a root of unity.
(3) Show that A/Fq is supersingular if and only if δA = 0.

1See PSET 5, Problem 2 to recall the definition of the q-valuation.
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(4) The angle rank of A/Fq is invariant under base change: for any integer r ≥ 1, we have
that δA = δAFqr

.

(5) Suppose that A/Fq is a geometrically simple and ordinary abelian surface. Show that
δA = 2.

(6) Does every geometrically simple ordinary abelian variety have maximal angle rank?

In the following problem, we look at an example of an abelian variety defined over local
field with dimension ≥ 2, and we use Shimura-Taniyama formula to see that its reduction is
a supersingular abelian variety.

Problem 9 (⋆ ⋆ ⋆)
Consider the planar curve over Q with affine equation given by C̃ : y7 = x2(x − 1)3 and
let C denote its normalization. Then C is a smooth projective curve defined over Q.

(1) Show that µ7 acts on C̃ by automorphism (x, y) → (x, ζ7y). It extends to an action
of µ7 on C.

(2) Let A denote the Jacobian of C. Then A is defined over Q. Show that End0(AQ)
contains the group algebra Q[µ7]. Notice that Q[µ7] ∼= Q×Q(ζ7) and Q(ζ7) is a CM
field with degree 6 over Q.

(3) Let T := Hom(µ7,C). Show that Q[µ7] ⊗Q C ∼=
∏

τ∈T Cτ , where Cτ is a copy of C
indexed by τ , with the action of ζ7 given as ζ7 · v = τ(ζ7)v.

(4) Let V denote the 2g-dimensional Q-vector space H1(A,Q) where g = dim(A). Since
V admits an action of Q[µ7], V ⊗Q C ∼= ⊕τ∈TVτ , where Vτ is the subspace of VC such
that ζ7 acts by τ(ζ7). It turns out that dimC Vτ = 1 for all the non-trivial character
τ and dimC Vτ = 0 for the trivial character. Using this fact, show that AQ admits
complex multiplication by Q[ζ7].

(5) On the other hand, the Hodge decomposition gives V ⊗Q C ∼= H0(A,ΩA) ⊕
H1(A,OA) ∼= Lie(AC)

∨ ⊕ Lie(AC)
∨
. Here, Lie(AC)

∨ := HomC(Lie(AC),C). Lie(AC) ∼=
Lie(AC) as an R vector space, while

√
1 acts via i on Lie(AC) and −i on Lie(AC). Let

Φ := {τ ∈ T : Vτ ⊆ Lie(AC)
∨}. Show that Φ is a CM type, and AQ has CM type

(K,Φ).
(6) Now fix a prime p ̸= 7 such that p is inert in K. Show that Qp ⊗Q K ∼= Kp, where p

is the unique prime in K above p and Kp is the completion of K at p.
(7) Notice that since the endomorphisms in Q[µ7] are defined over K, AK already has

complex multiplication by K. As a consequence of A having complex multiplication
by K and p ∤ 7, A has a model over OKp which has good reduction at the prime p.
Let AFq denotes the reduction at p, we have the injections:

Kp ↪→ End0(AK)⊗Q Qp ↪→ End0(AFq)⊗Q Qp ↪→ End0(D(AFq
[p∞]))

Using the fact that AFq
[p∞] is a p-divisible group of height 2g, show D(AFq

[p∞])[1
p
] ∼=

N r
m,n for some (m,n) = 1 and r(m + n) = 2g. Here the Nm,n is the Dk[

1
p
]-module as

define in PSET 5, problem 9. We say that AFq
[p∞] is isoclinic of slope n

m+n
.
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(8) Recall that in PSET 5, problem 9, we have shown that EndDk[
1
p
](Nm,n) ∼=

Qpm+n [F ]/(Fm+n − pn). Also, by the classification, N r
m,n
∼= Nmr,nr as Dk[

1
p
]-modules,

so EndDk[
1
p
](N

r
m,n)

∼= Qpr(m+n) [F ]/(F r(m+n) − prn). Using the Shimura-Taniyama for-

mula as stated in Lemma B.5 in the lecture notes, and the fact that πAFq
goes to F 2g

in End0
Dk[

1
p
](D(AFq

[p∞])) ∼= Qpr(m+n) [F ]/(F r(m+n) − prn), show that m = n = g. a

aIn this case, the Newton polygon of AFq has only slope 1
2 . Hence AFq is supersingular.

In the following problems, we sketch the proof of the following key input (Theorem B.4
in the lecture notes) to the surjectivity part of Honda-Tate theorem. More details can be
found here. Below C is the complex numbers, but it can be replaced by any algebraically
closed field of characteristic zero.

Theorem A. Let L be a CM field with a chosen CM type Φ. Then there exists an abelian
scheme of type (L,Φ) defined over the ring of integers of a number field contained in C.

Assume L† ⊂ L is a totally real subfield of index 2, such that [L† : Q] = g. We write
σi : L† → R, i = 1, . . . , g for the real places of L†. Recall that Φ consists of g complex
embeddings τi : L→ C, one above each σi. The first step is to construct an abelian variety
of type (L,Φ) over the complex numbers.

Problem 10 (⋆⋆)

(1) Show that choosing a CM type Φ for L is equivalent to giving a complex structure on
the real algebra R ⊗Q L, i.e., a map of R-algebras C → R ⊗Q L. We denote R ⊗Q L
with this complex structure by (R⊗Q L)Φ

(2) Denote by OL the ring of integers in L. Show that the quotient TΦ = (R⊗Q L)Φ/OL

has the structure of a complex torus with an embedding OL ↪→ End(TΦ), where OL

is considered as a subalgebra of R⊗Q L via the embedding x 7→ 1⊗ x and End(TΦ) is
the ring of endomorphisms as a complex manifold.

(3) To show that this complex torus is the complex analytification of an abelian variety
AΦ

a, we need to find an ample line bundle on it. According to the Theorem of
Lefschetz [Mum70, Page 29], it sufficesb to find a positive definite Hermitian form H
on (R⊗Q L)Φ, whose imaginary part Im(H) is integral on OL. Show that there exists
α ∈ OL, such that α2 ∈ L† and τi(α) =

√
−1 · βi, with βi ∈ R>0 for all i.

(4) Now let

H(x, y) = 2

g∑
i=1

βiτi(x)τi(y), x, y ∈ (R⊗Q L)Φ.

Show that this H satisfies the desired properties.

aNamely TΦ = AΦ(C) as an abelian group, but is endowed with the usual complex analytic topology.
bThe map α in the theorem can be taken to be the trivial map that sends OL to 1.

We continue to show that the abelian variety Aϕ with CM type (L,Φ) descends to some
number field K in C. Namely, there is a CM abelian variety (B, ιB : L ↪→ End0(B)), with
an isomorphism B ×K C ∼= AΦ, compatible with the L-actions.
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Problem 11 (⋆ ⋆ ⋆)

(1) Show that C can be written as a directed colimit of its subalgebras that are finitely
generated over Q. Conclude that Spec (C) = lim←−i

Si is the limit for a directed system
of schemes of finite type over Q.a

(2) Apply Tag 01ZM to the abelian variety AΦ/SpecC and conclude that there exists
some i and a map of finite presentation fi : Ai → Si, such that A ∼= Ai ×Si

Spec (C).
Apply Tag 0CNU and Tag 0CNV to deduce that i can be chosen such that fi is smooth
and proper.

(3) Since the group structure on AΦ only involves maps of finite presentation, deduce that
i can be chosen such that Ai is an abelian scheme over Si.

(4) Choose a basis b1, . . . , b2g of L over Q. Upon rescaling by an element in Q, we may
assume without loss of generality assume that each bi lies in End(AΦ) under L ↪→
End0(AΦ). Each bi is of finite presentation and hence also descends to Ai for some i.
We can therefore conclude that i can be chosen such that Ai is equipped with complex
multiplication ιi : L ↪→ End0(Ai), and that (A,L ↪→ End0(A)) ∼= (Ai, ιi)×Si

Spec (C).
(5) First use the Hilbert Nullstellensatz to show that the residue field K(s) of any closed

point s ∈ Si is a number field. Now take the fiber of Ai over any such s and denote it
by As. Assume Si to be connected. Show that End0(Ai) ↪→ End0(As) and hence As

is equipped with an L-action.

In fact, by increasing i if necessary, we may assume Si = Spec (Ri) with Ri containing all
Galois conjugates of L. It can also be achieved that the decomposition of the L ⊗Q C-
module Γ(AΦ,ΩAΦ/C) = Lie(AΦ)

∨ := (R ⊗Q L)∨Φ into subspaces on which L acts via τi
descends to a decomposition

Γ(Ai,ΩAi/Si
) =

∏
i

Vi,

where L acts on Vi via τi : L ↪→ Ri. Combined with the fact that upon localizing Ri at the
maximal ideal ms corresponding to s, we may assume K(s) to be a subfield of Ri,ms ↪→ C,
this decomposition is enough to ensure that the base change As ×K(s) C is isogenous to
AΦ. The kernel of the isogeny descends to some finite extension K/K(s), by quotienting
As ×K(s) K with the kernel of the isogeny, we find the desired B.

aIn fact we can replace Q by Z in the statement.

Finally, we show that CM abelian varieties can be defined over the ring of integers of a
number field, i.e., they have good reduction everywhere.

Problem 12 (⋆⋆)
Suppose that A has CM by a CM field L, and A is defined over a number field K. There
exists a finite extension K ′/K such that A ×K K ′ has good reduction at all finite places
v′ of K ′.a

We will show this in the following steps.

(1) Read Theorem 1 of [ST68], which is called the “Néron–Ogg–Shafarevich criterion”.
(2) Let S be the finite set of finite places v of K where A has bad reduction. Choose such

a place v, and fix a prime number ℓ such that v ∤ ℓ. Convince yourself that by [ST68,
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Theorem 1], it suffices to show that the image of the inertia group I(v) ⊂ Gal(Q/K)
is finite in Aut(TℓA).

(3) Recall from PSET 3, Problem 4(1) that since L ↪→ End0
K(A), VℓA = TℓA ⊗ Qℓ is a

free L ⊗ Qℓ-module of rank 2g/[L : Q], where g = dimA. Since A has CM by L,
[L : Q] = 2g. Check that the action of Gal(Q/K) on VℓA commutes with the action
of L ⊗ Qℓ, and therefore the image of Gal(Q/K) is contained in GL1(L ⊗ Qℓ). Use
this to show that the action of Gal(Q/K) on VℓA (and hence on TℓA) is abelian.

(4) Deduce from part (3) that the action of I(v) factors through Gal(Kab
v /Kun

v ), where
we view I(v) = Gal(Kv/K

un
v ) ⊂ Gal(Kv/Kv) ⊂ Gal(Q/K), and Kab

v is the maximal
abelian extension of the local field Kv, and Kun

v is the maximal unramified extension
of Kv.

(5) Recall from local class field theory that Gal(Kab
v /Kun

v ) ∼= O×
Kv

. Convince yourself that

O×
Kv

is the product of a finite group and a pro-p group, where p is the characteristic
of the residue field of Kv.

(6) Observe that the pro-ℓ group 1+ℓEndZℓ
(TℓA) is a finite-index subgroup of AutZℓ

(TℓA).
Conclude that the image of any map from a pro-p group to a pro-ℓ group must have
finite image.

aSee [Liu, Cor. 4.10] for a proof.
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