Modular Curve X(1) and the j-invariant

1 Modular Functions and Uniformization

In last lecture, we discussed that isomorphism classes of elliptic curves defined over the complex numbers
correspond to lattices A C C up to homothety. Thus, we can parameterize isomorphism classes of elliptic
curves over C by parameterizing lattices up to homothety.

For any lattice Zw1 + Zw,, we can find a homothetic lattice Ay = Z + Z7 for some T € C satisfying
Im T > 0. Thus, there is a surjective map from the upper half plane

H={teC|ImT >0}

to the set of homothety classes of lattices given by 7 +— A; :=Z + Zt.
But the choice from A to such a 7 is not unique.
The modular group

SLy(Z) = { (i Z) |a,b,c,d € Z,ad —bc = 1}

acts on H by linear fractional transformations.

b
- (i Z) €SLy(Z), 7(t)="T% veeHl
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For any 71, » € H, the lattices A, and A+, are homothetic if and only if there exists 7y € SL,(Z) such
that T, = (7). Thus lattices up to homothety are parameterized by the upper plane H modulo the action
of SL(Z). And this set SLy(Z) \ H is in bijection to the region

F={teH]||R(1)| <5, |t| >1}.
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This region is called a fundamental domain for SL,(Z) \ H an
A; for some T € F.

every lattice A C C is homothetic to a lattice
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The quotient SL,(Z) \ H (denoted as Y (1)) has a natural structure of a genus 0 Riemann surface with a
puncture, a 2-sphere with one point missing. Then it’s natural to want to compactify this topological space.
To add this missing point and give it a moduli interpretation, we define the extended upper half plane

H*=HUQU {c0}.



Then SL,(Z) acts on H* and the quotient SL,(Z) \ H* (denoted as X(1)) is a compact genus 0 Riemann
surface. There is one point in the compliment of Y (1) C X(1) and this point is called the cusp of X(1).
Next, we introduce a function j on homothety classes of lattices which is a complex analytic isomor-
phism of (open) Riemann surfaces j : Y(1) — C and it extends to j : X(1) ~ P'(C).
Recall from Lecture 2, given a lattice A and k € Z+.1, we defined Eisenstein series

G2k(A) = Z a)_Zk.
weA
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Given T € H, it is naturally associated to the lattice Ar = Z + Z7 and thus we can consider Gy (7) as
a meromorphic function defined on the upper half plane H. Note that for any v = (Z Z) € SLy(Z), we

have
Gor(7) = (T + d)* Gy (7).

(Meromorphic functions on H satisfying this condition are called weakly modular of weight 2k. The Eisen-
stein series Gy, k > 1 is not only weakly modular, it is also holomorphic on IH and at co. It is an example
of a modular form of weight 2k.)

The function Gy is defined on the set of lattices but it is not a function on homothety classes of lattices.
However, we can construct a function on homothety classes of lattices using Gyy.

Definition 1.1. Let Z + Zt C C be a lattice. The j-invariant is defined to be the complex number

(60Gy(7))°
(60G4(7))3 —27(140G¢(71))%"

i(t) :=1728

For any v € SLy(Z), we have j(y1) = j(7).
Theorem 1.2. If A1, Ay C C are two lattices, then they are homothetic if and only if

j(A1) = j(Az).

Since <(1) i) € SL,(Z), the function j : H — C satisfies j(T + 1) = j(t). Thus, let ¢ = ¢>™'7, the

function j has a Laurent expansion in the variable g. Explicitly,
. 1 1 (e "
j(r) = §+744+196884q+... = 64_ chq ,
n=0

where the coefficients ¢, are integers for all n > 0.

2 The j-invariant of an Elliptic Curve

From our discussion in lecture 2, a lattice A C C corresponds to an elliptic curve defined by a Weierstrass
equation

y? = 4x3 — 60G4x — 140Gy (y* = x® — 15G4x — 35Gg).
Following the definition of j-invariant for a lattice A, given an elliptic curve E over some field K with

Weierstrass equation
¥ =x>+Ax+B,
we can define its j-invariant to be
(44)°
16(4A3 4 27B%)°
When K is a subfield of C, our discussion implies that the j-invariant determines the isomorphism class of

E over C. Although we won't prove it, but it’s true that, the j-invariant determines the isomorphism class
of an elliptic curve E over K for any field K.

j=1728



From the definition, we see that for E defined over any field K (thus A, B € K), its j-invariant takes value
in K. Conversely, given a j-invariant jy € K for some field K, the elliptic curve

y2+xy:x3— 36 X — !
jo — 1728 jo— 1728

has its j-invariant equal to jy unless jy = 0 or 1728. Values 0 and 1728 are j-invariants of elliptic curves
y? +y = x3 and y* = x> + x respectively. Thus, over an algebraically closed field K, the set of isomorphism
classes of elliptic curves is in bijection to the set of all j values in K.

Note that the cusp of X(1) corresponds to j-invariant value co. Thus, let p be a prime of a field K and E/K
an elliptic curve, if the valuation of the j-invariant is negative at p (“having a power of p in the denominator
of j(E)”), then the reduction of E at p is singular and we call this reduction a bad reduction. If the valuation
of the j-invariant is non-negative at p, then E has potential good reduction at p, meaning there is a finite
extension L/K such that E ® Spec L has good reduction at a prime above p.

Moreover, let Ej, E; be two elliptic curves defined over a number field K and let p be a prime of K at
which E;, E; admit good reduction. For each E; there exists a Weierstrass equation y2 = x3 + A;x + B; such
that y> = x® + A;x + B; with A;, B; € Fy, the reduction of A, B in the residue field of p defines an elliptic
curve &; over IF,. The j-invariants j(E;) = j(Ez) mod p if and only if & is isomorphic to & over F,,.

3 The j-invariant of a CM Elliptic Curve

Recall from Lecture 2, a lattice A = Z + Zt C C corresponds to a CM elliptic curve when T is an imaginary
quadratic number. Now let’s talk about the j-invariant j(7) of a CM elliptic curve, which is often called a
singular moduli.

Proposition 3.1. The j-invariant of a CM elliptic curve is an algebraic number.

Proof. Let E/C : y* = x® + Ax + B be an elliptic curve and ¢ € End(E). For any ¢ € Aut(C), let E” be the
elliptic curve with Weierstrass equation y> = x> + o(A)x + ¢(B). Then ¢ o ¢ o 0! is an Endomorphism of
EY. Thus, if E has CM by an order O, so does E’.

The isomorphism classes of E and E” are determined by their j-invariants and j(E?) = o (j(E)) following
the definition of the j-invariant. Recall from lecture 2, that the isomorphism classes of elliptic curves with
CM by O are parameterized by the class group of O which is a finite group. We conclude that j(E) is
algebraic. O

Let h be the class number of an order O of an imaginary quadratic field. From the above proof, we
see that Q(j(E)) is a number field of degree at most i where E is an elliptic curve with CM by O. In fact

[QG(E)) : Q] = h.

Theorem 3.2. The j-invariant of a CM elliptic curve is an algebraic integer. Thus, a CM elliptic curve has potential
good reduction at every prime.

Sketch of proof. First, recall the degree of the multiplication by m isogeny is m? for any positive integer .
Let « € O C C be an endomorphism of an elliptic curve E. Then the degree of & : E — E is its norm, or
simply a& where @ its complex conjugate. Thus, an elliptic curve having CM by an order O C Q(+/—d) can
be characterized by the existence of an endomorphism whose degree m is not a perfect square.

Consider a lattice A; = Z + Z7, the elliptic curve C/A; admits a degree m isogeny to C/A;;r by
z — mz. Using the existence of dual isogeny, admitting a degree m isogeny to or from C/ A are equivalent.
In fact, all lattices A for which C/A admitting a degree m isogeny to C/ A+ takes the form Z + Z(m+yt) for
some 7 € SL,(Z). Up to homothety, there are finitely many homothety classes of lattices A for which C/A
admits a degree m isogeny to C/A; for a fixed A;. We list a representative of this set of mytas 7, -+, Ty

Now we can define a polynomial in variable x in the following way

n

(X, 7) = [T(X = j(n)).

i=1



This theorem follows from the following facts about the polynomial ®;,. The proof of these statements all
base on the g-expansion of the j-function.

If

then

1 o0
=4 Z cnq",
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j(myt) = 7 %”m =+ E a0 (gV/™)" " in which we take my = (0 d) )
If we vary T, the coefficients of ®,, (X, T) varies in the following way: ®,,(X, 1) € C(j(1))[X].

This follows from the coefficients of ®,, as symmetric polynomials of j(mT) are holomorphic func-
tions on T € H and invariant under the action of SL;(Z). These coefficients are meromorphic at the
cusps, thus are modular functions (weakly modular+meromorphic at o). All holomorphic modular
functions of SL,(Z) are polynomials of j(T).

Consider ®,, (X, T) as a polynomial with two variables ®,,(X,Y) € C[X, Y] by setting Y = j(7). Then,
in fact ®,,(X,Y) € Z[X, Y].

Using the explicit Galois action of Gal(Q/Q) on j(m~yT) using the g-expansion, we can conclude
P, (X,Y) € Q[X,Y]. Since the coefficients of the g-expansions of j(myT) are algebraic integers, we
conclude that ®,,(X,Y) € Z[X,Y].

When m is not a perfect square, ®,, (X, X) is an integral polynomial of X with leading coefficients +1.

This again follows from the explicit g-expansion of j(mvyT), where my = <?) Z) . Note that we need

m = ad to not be a perfect square in this argument.
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