
JACOBIANS OF

GENUS 1 CURVES

Sang Yook An

Seog Young Kim

David C. Marshall*

Susan H. Marshall

William G. McCallum

Alexander R. Perlis

Support provided by the Southwest Center for Arithmetical
Algebraic Geometry

1



The problem

C: a genus 1 curve defined over Q

J: the Jacobian curve of C

Here we consider the following problem:

Given C, find J.

We present a unified treatment of each of the

following cases:

• a double cover of P1

• a cubic plane curve

• an intersection of quadric surfaces in P3
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The work of Weil

In his 1954 paper Remarques sur un mémoire

d’Hermite, A. Weil produced the following for-

mulas:

If C is given by

y2 = a0x4 + 4a1x3 + 6a2x2 + 4a3x + a4

then J can be written in Weierstrass form as

ζ2 = 4ξ3 − iξ − j

where

i =a0a4 − 4a1a3 + 3a2
2

j =a0a2a4 + 2a1a2a3 − a0a3
2 − a4a1

2 − a2
3.
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Invariant theory

Fn,m: forms of degree n in m variables

Let F be such a form (or a collection of forms).

The GLm action on Fn,m gives rise to the no-

tions of invariants and covariants of F .

An invariant of F is a polynomial expression in

the coefficients of F .

A covariant is another form in m variables,

whose coefficients are polynomial expressions

in the coefficients of F . In particular, an in-

variant is a covariant of degree zero.

A dependence relation among covariants is called

a syzygy.
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Connection to curves

It is via these fundamental syzygies that we

obtain Weierstrass models for the Jacobians

of our curves.

Namely,

• for double covers of P1, we use a syzygy

satisfied by covariants of a binary quartic

form.

• for plane cubics, we use a syzygy satisfied

by covariants of a ternary cubic form.

• for space quartics, we use a syzygy satis-

fied by covariants of a pair of quaternary

quadratic forms.
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Ternary cubic forms

The general plane cubic is given by the equa-

tion U = 0, where U is a ternary cubic form:

U = ax3+by3+cz3+3a2x2y+3a3x2z+3b1y2x

+ 3b3y2z + 3c1z2x + 3c2z2y + 6mxyz.

Invariants of U : S, T

Covariants of U : U , H, Θ, J.

They satisfy the following syzygy:

J2 = 4Θ3 + 108SΘH4 − 27TH6 + TU2Θ2

− 4S3U4Θ + 2STU3ΘH − 72S2U2ΘH2

− 18TUΘH3 − 16S4U5H − 11S2TU4H2

− 4T2U3H3 + 54STU2H4 − 432S2UH5.

or

J2 = 4Θ3 + 108SH4Θ− 27TH6.
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Jacobian of a plane cubic

J2 = 4Θ3 + 108SH4Θ− 27TH6

Dividing through by H6 gives

( J

H3

)2
= 4

( Θ

H2

)3
+ 108S

( Θ

H2

)
− 27T.

So if we let E denote the curve

ζ2 = 4ξ3 + 108Sξ − 27T,

then the map

φ : P 7→
( Θ(P )

H2(P )
,

J(P )

H3(P )

)

is a rational map from C to E.
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Two quadratic forms:

A space quartic

Let U and V denote quadratic forms in four

variables. The covariant theory of such a sys-

tem is also well known.

Five basic invariants: σ0, . . . , σ4,

Five basic covariants: U , V , F1, F2, G.

These satisfy a fundamental syzygy:

G2 = σ0F1
4 − σ1F1

3F2 + σ2F1
2F2

2 − σ3F1F2
3 + σ4F2

4,

or

( G

F2
2

)2
= σ0

(F1

F2

)4 − σ1

(F1

F2

)3
+ σ2

(F1

F2

)2 − σ3
F1

F2
+ σ4.
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Let C′ denote the curve

y2 = σ0x4 + σ1x3 + σ2x2 + σ3x + σ4.

Then the map

φ : P 7→
(−F1(P )

F2(P )
,

G(P )

F2(P )2

)

is a rational map from C to C′. Composing this

with Weil’s result gives a rational map from C

to a Weierstrass model.

In each case the covariant theory of the right

type of object provided us with rational maps

from our curves to Weierstrass models of ellip-

tic curves. We want to conclude that in each

case the elliptic curve is in fact a model of the

Jacobian.
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A lemma

An n-torsion packet on C is a set of n2 points

such that for any pair, say P and Q, the divisor

class [n(P−Q)] is trivial; that is, [P−Q] ∈ J[n].

LEMMA Let C be a genus 1 curve defined

over Q, and J its Jacobian. Let W ⊂ P2 be

a Weierstrass model. If there is a morphism

φ : C → W defined over Q, so that φ−1(∞) is an

n-torsion packet, then J ' W , the isomorphism

being defined over Q.

REMAINING QUESTION: In each case, what

is φ−1(∞)?
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Plane cubic case
C: a cubic plane curve U = 0

W : ζ2 = 4ξ3 + 108Sξ − 27T

φ : P 7→
(

Θ(P )
H2(P )

, J(P )
H3(P )

)

or projectively

φ : P 7→ [Θ(P )H(P ) : J(P ) : H3(P )]

So, φ−1(∞) = φ−1[0 : 1 : 0] is precisely where
H vanishes on C.

H is the Hessian covariant of U , so H vanishes
at the nine flex points of C.

CLAIM: The nine flex points form a 3-torsion
packet.

Let P and Q be two flex points, with tangent
lines L1 and L2. Then the divisor (3P −3Q) is
the divisor of the function L1

L2
.
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