
6 Jointly continuous random variables

Again, we deviate from the order in the book for this chapter, so the subsec-
tions in this chapter do not correspond to those in the text.

6.1 Joint density functions

Recall that X is continuous if there is a function f(x) (the density) such that

P(X ≤ t) =

∫ t

−∞

fX(x) dx

We generalize this to two random variables.

Definition 1. Two random variables X and Y are jointly continuous if there
is a function fX,Y (x, y) on R

2, called the joint probability density function,
such that

P(X ≤ s, Y ≤ t) =

∫ ∫

x≤s,y≤t

fX,Y (x, y) dxdy

The integral is over {(x, y) : x ≤ s, y ≤ t}. We can also write the integral as

P(X ≤ s, Y ≤ t) =

∫ s

−∞

(
∫ t

−∞

fX,Y (x, y) dy

)

dx

=

∫ t

−∞

(
∫ s

−∞

fX,Y (x, y) dx

)

dy

In order for a function f(x, y) to be a joint density it must satisfy

f(x, y) ≥ 0
∫ ∞

−∞

∫ ∞

−∞

f(x, y)dxdy = 1

Just as with one random variable, the joint density function contains all
the information about the underlying probability measure if we only look at
the random variables X and Y . In particular, we can compute the probability
of any event defined in terms of X and Y just using f(x, y).

Here are some events defined in terms of X and Y :
{X ≤ Y }, {X2 +Y 2 ≤ 1}, and {1 ≤ X ≤ 4, Y ≥ 0}. They can all be written
in the form {(X, Y ) ∈ A} for some subset A of R

2.
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Proposition 1. For A ⊂ R
2,

P((X, Y ) ∈ A) =

∫ ∫

A

f(x, y) dxdy

The two-dimensional integral is over the subset A of R
2. Typically, when

we want to actually compute this integral we have to write it as an iterated
integral. It is a good idea to draw a picture of A to help do this.

A rigorous proof of this theorem is beyond the scope of this course. In
particular we should note that there are issues involving σ-fields and con-
straints on A. Nonetheless, it is worth looking at how the proof might start
to get some practice manipulating integrals of joint densities.

If A = (−∞, s] × (−∞, t], then the equation is the definition of jointly
continuous. Now suppose A = (−∞, s] × (a, b]. The we can write it as
A = [(−∞, s] × (−∞, b]] \ [(−∞, s] × (−∞, a]] So we can write the event

{(X, Y ) ∈ A} = {(X, Y ) ∈ (−∞, s] × (−∞, b]} \ {(X, Y ) ∈ (−∞, s] × (−∞, a]}

MORE !!!!!!!!!

Example: Let A ⊂ R
2. We can X and Y are uniformly distributed on A if

f(x) =

{

1
c
, if (x, y) ∈ A

0, otherwise

where c is the area of A.

Example: Let X, Y be uniform on [0, 1] × [0, 2]. Find P(X + Y ≤ 1).

Example: Let X, Y have density

f(x, y) =
1

2π
exp(−

1

2
(x2 + y2))

Compute P(X ≤ Y ) and P(X2 + Y 2 ≤ 1).

Example: Now suppose X, Y have density

f(x, y) =

{

e−x−y if x, y ≥ 0
0, otherwise

Compute P(X + Y ≤ t).
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End of October 19 lecture

What does the pdf mean? In the case of a single discrete RV, the pmf
has a very concrete meaning. f(x) is the probability that X = x. If X is a
single continuous random variable, then

P(x ≤ X ≤ x + δ) =

∫ x+δ

x

f(u) du ≈ δf(x)

If X, Y are jointly continuous, than

P(x ≤ X ≤ x + δ, y ≤ Y ≤ y + δ) ≈ δ2f(x, y)

6.2 Independence and marginal distributions

Suppose we know the joint density fX,Y (x, y) of X and Y . How do we find
their individual densities fX(x), fY (y). These are called marginal densities.
The cdf of X is

FX(x) = P(X ≤ x) = P(−∞ < X ≤ x,−∞ < Y < ∞)

=

∫ x

−∞

[
∫ ∞

−∞

fX,Y (u, y) dy

]

du

Differentiate this with respect to x and we get

fX(x) =

∫ ∞

−∞

fX,Y (x, y) dy

In words, we get the marginal density of X by integrating y from −∞ to ∞
in the joint density.

Proposition 2. If X and Y are jointly continuous with joint density fX,Y (x, y),
then the marginal densities are given by

fX(x) =

∫ ∞

−∞

fX,Y (x, y) dy

fY (y) =

∫ ∞

−∞

fX,Y (x, y) dx
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We will define independence of two contiunous random variables differ-
ently than the book. The two definitions are equivalent.

Definition 2. Let X, Y be jointly continuous random variables with joint
density fX,Y (x, y) and marginal densities fX(x), fY (y). We say they are
independent if

fX,Y (x, y) = fX(x)fY (y)

If we know the joint density of X and Y , then we can use the definition
to see if they are independent. But the definition is often used in a different
way. If we know the marginal densities of X and Y and we know that they
are independent, then we can use the definition to find their joint density.

Example: If X and Y are independent random varialbes and each has the
standard normal distribution, what is their joint density?

f(x, y) =
1

2π
exp(−

1

2
(x2 + y2))

Example: Suppose that X and Y have a joint density that is uniform on
the disc centered at the origin with radius 1. Are they independent?

Example: In the homework you will show that if X and Y have a joint
density that is uniform on the square [a, b]× [c, d], then they are independent.

Example: Suppose that X and Y have joint density

f(x, y) =

{

e−x−y if x, y ≥ 0
0, otherwise

Are X and Y independent?

Example: Suppose that X and Y are independent. X is uniform on [0, 1]
and Y has the Cauchy density.
(a) Find their joint density.
(b) Compute P(0 ≤ X ≤ 1/2, 0 ≤ Y ≤ 1)
(c) Compute P(Y ≥ X).
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6.3 Expected value

If X and Y are jointly continuously random variables, then the mean of X
is still defined by

E[X] =

∫ ∞

−∞

x fX(x) dx

If we write the marginal fX(x) in terms of the joint density, then this becomes

E[X] =

∫ ∞

−∞

∫ ∞

−∞

x fX,Y (x, y) dxdy

Now suppose we have a function g(x, y) from R
2 to R. Then we can define

a new random variable by Z = g(X, Y ). In a later section we will see how to
compute the density of Z from the joint density of X and Y . We could then
compute the mean of Z using the density of Z. Just as in the discrete case
there is a shortcut.

Theorem 1. Let X, Y be jointly continuous random variables with joint
density f(x, y). Let g(x, y) : R

2 → R. Define a new random variable by
Z = g(X, Y ). Then

E[Z] =

∫ ∞

∞

∫ ∞

∞

g(x, y) f(x, y) dxdy

provided
∫ ∞

∞

∫ ∞

∞

|g(x, y)| f(x, y) dxdy < ∞

An important special case is the following

Corollary 1. If X and Y are jointly continuous random variables and a, b
are real numbers, then

E[aX + bY ] = aE[X] + bE[Y ]

Example: X and Y have joint density

f(x, y) =

{

x + y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0, otherwise

Let Z = X + Y . Find the mean and variance of Z.

We now consider independence and expectation.
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Theorem 2. If X and Y are independent and jointly continuous, then

E[XY ] = E[X]E[Y ]

Proof. Since they are independent, fX,Y (x, y) = fX(x)fY (y). So

E[XY ] =

∫ ∫

xy fX(x) fY (y) dxdy

=

[
∫

x fX(x) dx

] [
∫

y fY (y) dy

]

= E[X]E[Y ]

6.4 Function of two random variables

Suppose X and Y are jointly continuous random variables. Let g(x, y) be a
function from R

2 to R. We define a new random variable by Z = g(X, Y ).
Recall that we have already seen how to compute the expected value of Z. In
this section we will see how to compute the density of Z. The general strategy
is the same as when we considered functions of one random variable: we first
compute the cumulative distribution function.

Example: Let X and Y be independent random variables, each of which is
uniformly distributed on [0, 1]. Let Z = XY . First note that the range of Z
is [0, 1].

FZ(z) = P(Z ≤ z) =

∫ ∫

A

1 dxdy

Where A is the region

A = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, xy ≤ z}

PICTURE

FZ(z) = z +

∫ 1

z

[

∫ z/x

0

1 dy

]

dx

= z +

∫ 1

z

[

∫ z/x

0

1 dy

]

dx
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= z +

∫ 1

z

z

x
dx

= z + z ln x|1z = z − z ln z

This is the cdf of Z. So we differentiate to get the density.

d

dz
FZ(z) =

d

dz
z − z ln z = 1 − ln z − z

1

z
= − ln z

fZ(z) =

{

− ln z, if 0 ≤ z ≤ 1
0, otherwise

Example: Let X and Y be independent random variables, each of which is
exponential with parameter λ. Let Z = X + Y . Find the density of Z.

Should get gamma with same λ and w = 2.
This is special case of a much more general result. The sum of gamma(λ, w1)

and gamma(λ, w2) is gamma(λ, w1 + w2). We could try to show this as we
did the previous example. But it is much easier to use moment generating
functions which we will introduce in the next section.

End of October 21 lecture

One of the most important examples of a function of two random variables
is Z = X + Y . In this case

FZ(z) = P(Z ≤ z) = P(X + Y ≤ z)

=

∫ ∞

−∞

[
∫ z−x

−∞

f(x, y) dy

]

dx

To get the density of Z we need to differentiate this with respect to Z. The
only z dependence is in the upper limit of the inside integral.

fZ(z) =
d

dz
FZ(z) =

∫ ∞

−∞

[

d

dz

∫ z−x

−∞

f(x, y) dy

]

dx

=

∫ ∞

−∞

f(x, z − x)dx
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If X and Y are independent, then this becomes

fZ(z) =

∫ ∞

−∞

fX(x)fY (z − x)dx

This is known as a convolution. We can use this formula to find the density of
the sum of two independent random variables. But in some cases it is easier
to do this using generating functions which we study in the next section.

Example: Let X and Y be independent random variables each of which has
the standard normal distribution. Find the density of Z = X + Y .

We need to compute the convolution

fZ(z) =
1

2π

∫ ∞

−∞

exp(−
1

2
x2 −

1

2
(z − x)2) dx

=
1

2π

∫ ∞

−∞

exp(−x2 −
1

2
z2 + xz) dx

=
1

2π

∫ ∞

−∞

exp(−(x − z/2)2 −
1

4
z2) dx

= e−z2/4 1

2π

∫ ∞

−∞

exp(−(x − z/2)2) dx

Now the substitution u = x − z/2 shows
∫ ∞

−∞

exp(−(x − z/2)2) dx =

∫ ∞

−∞

exp(−u2) du

This is a constant - it does not depend on z. So fZ(z) = ce−z2

. Another
simple substitution allows one to evaluate the constant, but there is no need.
We can already see that Z has a normal distribution with mean zero and
variance 2. The constant is whatever is needed to normalize the distribution.

6.5 Moment generating functions

This will be very similar to what we did in the discrete case.

Definition 3. For a continuous random variable X, the moment generating
function (mgf) of X is

MX(t) = E[etX ] =

∫ ∞

−∞

etx fX(x) dx
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Example: Compute it for exponential. Should find M(t) = λ
λ−t

.
Example: In the homework you will compute it for the gamma distribution
and find (hopefully)

M(t) =

(

λ

λ − t

)w

Proposition 3. (1) Let X be a continuous random variable with mgf MX(t).
Then

E[Xk] =
dk

dtk
MX(t)|t=0

(2) If X and Y are independent continuous random variables then

MX+Y (t) = MX(t)MY (t)

(3) If the mgf of X is MX(t) and we let Y = aX + b, then

MY (t) = etbMX(at)

Proof. For (1)

dk

dtk
MX(t)|t=0 =

dk

dtk

∫ ∞

−∞

fX(x) etx|t=0 dx

=

∫ ∞

−∞

fX(x)
dk

dtk
etx|t=0 dx

=

∫ ∞

−∞

fX(x) xk etx|t=0 dx

=

∫ ∞

−∞

fX(x) xk dx = E[Xk]

If X and Y are independent, then

MX+Y (t) = E[exp(t(X + Y ))] = E[exp(tX) exp(tY )]

= E[exp(tX)]E[exp(tY )] = MX(t)MY (t)

This calculation assumes that since X and Y are independent, then exp(tX)
and exp(tY ) are independent random variables. We have not shown this.

Part (3) is just

MY (t) = E[etY ] = E[et(aX+b)] = etbE[etaX ] = etbMX(at)
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End of October 26 lecture

As an application of part (3) we have

Example: Find the mgf of the standard normal and use part (3) to find the
mgf of the general normal.

Let Z have a standard normal distribution. We complete the square and
get

M(t) = exp(
1

2
t2)

Now let X = µ + σZ. Then X has a normal distribution with mean µ and
variance σ2. By (3)

MX(t) = exp(µt)MZ(σt) = exp(µt +
1

2
σ2t2)

Proposition 4. (a) If X1, X2, · · · , Xn are independent and each is normal
with mean µi and variance σ2

i , then Y = X1 + X2 + · · · + Xn has a normal
distribution with mean µ and variance σ2 given by

µ =
n

∑

i=1

µi,

σ2 =

n
∑

i=1

σ2
i

(b) If X1, X2, · · · , Xn are independent and each is exponential with parameter
λ, then Y = X1 + X2 + · · · + Xn has a gamma distribution with parameters
λ = λ and w = n.
(c) If X1, X2, · · · , Xn are independent and each is gamma with parameters
λ, wi, then Y = X1 +X2 + · · ·+Xn has a gamma distibution with parameters
λ and w = w1 + · · ·+ wn.

We will prove the theorem by proving statements about generating func-
tions. For example, for part (a) what we will really prove is that the moment
generating function of Y is that of a normal with the stated parameters.
To complete the proof we need to know that if two random variables have
the same moment generating functions then they have the same densities.
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This is a theorem but it is a hard theorem and it requires some technical
assumptions on the random variables. We will ignore these subtleties and
just assume that if two RV’s have the same mgf, then they have the same
density.

Proof. We prove all three parts by simply computing the mgf’s involved.

6.6 Cumulative distribution functions and more inde-

pendence

Recall that for a discrete random variable X we have a probability mass
function fX(x) which is just fX(x) = P(X = x). And for a continuous
random variable X we have a probability density function fX(x). It is a
density in the sense that if ǫ > 0 is small, then P(x ≤ X ≤ x + ǫ) ≈ f(x)ǫ.

For both types of random variables we have a cumulative distribution
function and its definition is the same for all types of RV’s.

Definition 4. Let X, Y be random variables (discrete or continuous). Their
joint (cumulative) distribution function is

FX,Y (x, y) = P(X ≤ x, Y ≤ y)

If X and Y are jointly continuous then we can compute the joint cdf from
their joint pdf:

FX,Y (x, y) =

∫ x

−∞

[
∫ y

−∞

f(u, v) dv

]

du

If we know the joint cdf, then we can compute the joint pdf by taking partial
derivatives of the above :

∂2

∂x∂y
FX,Y (x, y) = f(x, y)

Calc review : partial derivatives

The joint cdf has properties similar to the cdf for a single RV.

Proposition 5. Let F (x, y) be the joint cdf of two continuous random vari-
ables. Then F (x, y) is a continuous function on R

2 and

lim
x,y→−∞

F (x, y) = 0, lim
x,y→∞

F (x, y) = 1,
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F (x1, y) ≤ F (x2, y) if x1 ≤ x2, F (x, y1) ≤ F (x, y2) if y1 ≤ y2

lim
x→∞

F (x, y) = FY (y) lim
y→∞

F (x, y) = FX(x)

We will use the joint cdf to prove more results about independent of RV’s.

Theorem 3. If X and Y are jointly continuous random variables then they
are independent if and only if FX,Y (x, y) = FX(x)FY (y).

The theorem is true for discrete random variables as well.

Proof.

Example: Suppose that the joint cdf of X and Y is

F (x, y) =















1
2
(1 − e−2x)(y + 1) if −1 ≤ y ≤ 1, x ≥ 0

(1 − e−2x) if y ≥ 0, x > 1
0 if y < 0
0 if y ≥ 0, x < −1

Show that X and Y are independent and find their joint density.

Theorem 4. If X and Y are independent jointly continuous random vari-
ables and g and h are functions from R to R then g(X) and h(Y ) are inde-
pendent random variables.

Proof. We will only prove a special case. We assume that g and h are in-
creasing. We also assume they are differentiable. Let W = g(X), Z = h(Y ).
By the previous theorem we can show that W and Z are independent by
showing that FW,Z(w, z) = FW (w)FZ(z). We have

FW,Z(w, z) = P(g(X) ≤ w, h(Y ) ≤ z)

Because g and h are increasing, the event {g(X) ≤ w, h(Y ) ≤ z} is the same
as the event {X ≤ g−1(w), Y ≤ h−1(z)}. So

FW,Z(w, z) = P(X ≤ g−1(w), Y ≤ h−1(z))

= FX,Y (g−1(w), h−1(z)) = FX(g−1(w))FY (h−1(z))
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where the last equality comes from the previous theorem and the indepen-
dence of X and Y . The individual cdfs of W and Z are

FW (w) = P(X ≤ g−1(w)) = FX(g−1(w))

FZ(z) = P(Y ≤ h−1(z)) = FY (h−1(z))

So we have shown FW,Z(w, z) = FW (w)FZ(z).

Suppose we have two random variables X and Y and we know their joint
density. We have two function g : R

2 → R and g : R
2 → R, and we define

two new random variables by W = g(X, Y ), Y = h(X, Y ). Can we find the
joint density of W and Z. In principle we can do this by computing their
joint cdf and then taking partial derivatives. In practice this can be a mess.
There is a another way involving Jacobians which we will study in the next
section. We illustrate the cdf approach with an example.

Example Let X and Y be independent standard normal RV’s. Let W =
X + Y and Z = X − Y . Find the joint density of W and Z.

Theorem 5. If X and Y are independent and jointly continuous, then

var(X + Y ) = var(X) + var(Y )

X,Y independent iff expectation factors for all functions of X,Y
statistic paradigm - iid

6.7 Change of variables

calc review - Jacobians
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