5 Continuous random variables

We deviate from the order in the book for this chapter, so the subsections in
this chapter do not correspond to those in the text.

5.1 Densities of continuous random variable

Recall that in general a random variable X is a function from the sample
space to the real numbers. If the range of X is finite or countable infinite,
we say X is a discrete random variable. We now consider random variables
whose range is not countably infinite or finite. For example, the range of X
could be an interval, or the entire real line.

For discrete random variables the probability mass function is fx(z) =
P(X = z). If we want to compute the probability that X lies in some set,
e.g., an interval [a, b], we sum the pmf:

Pla<X<b)= > [x(@)

A special case of this is

P(X <b)= ) fx(x)

For continuous random variables, we will have integrals instead of sums.

Definition 1. A random variable X is continuous if there is a non-negative
function fx(x), called the probability density function (pdf) or just density,
such that

P(X <) :/ fx(z)dx

Proposition 1. If X is a continuous random wvariable with density f(x),
then

1. P(X =x) =0 for any x € R.
2. Pla<X <b)= [ f(z)de

g [ flx)de =1



Proof. First we observe that subtracting the two equations

P(ng):/_ Fol@) da, P(Xga):/_a fr(@) do

gives

b
P(X <b)-P(X <a) :/ fx(x)dx

and we have P(X <) —P(X <a) =P(a < X <), s0

Pla< X <b) = / fu(@) da (1)

Now for any n

P(X:x)gP(x—l/n<X§x):/x Fo(t)dt

xz—1/n

As n — oo, the integral goes to zero, so P(X = x) = 0.
Property 2 now follows from eq. (1) since

Pa<X<b)=Pla<X<b)+PX=0a)=Pla<X <Dh)

Note that since the probability X equals any single real number is zero,
Pla <X <b),Pla< X <b),Pla< X <b), and P(a < X <) are all the
same.

Property 3 is just the fact that P(—oo < X < 00) = 1. O]

Caution Often the range of X is not the entire real line. Outside of the
range of X the density fx(x) is zero. So the definition of f,(z) will typically
involves cases: in one region it is given by some formula, elsewhere it is simply
0. So integrals over all of R which contain fx(z) will reduce to intervals over
a subset of R. If you mistakenly integrate the formula over the entire real
line you will get nonsense.



5.2 Expected value

Definition 2. Let X be a continuous RV with density fx(z). Then the
expected value of X is given by

BLX) = [ afx(o)do

o0

provided

/OO |z| fx(x)dr < oo

(If this last integral is infinite we say the expected value of X is not defined.)

Just as with discrete RV’s, if X is a continuous RV and g is a function
from R to R, then we can define a new RV by Y = ¢(X). How do we compute
the mean of Y 7 One approach would be to work out the density of ¥ and
then use the definition of expected value. We have not yet seen how to find
the density of Y, but for this question there is a shortcut just as there was

for discrete RV.

Theorem 1. Let X be a continuous RV, g a function from R to R. Let
Y = g(X). Then

BlY] - Elg(x)] - [ " gle) fx (@) de

[e.9]

The definition of the variance is analogous to the discrete case. In fact,
for any random variable (discrete, continuous, or otherwise) the variance is
given by

Definition 3. The variance of X is
0? =E[(X —p)?], n=E[X]
provided the expected value is defined.

Just as in the discrete case, there is an application of the above theorem
that gives us a shortcut for computing the variance



Corollary 1. If X is a continuous random variable with finite variance o>
and mean [, then

o? = E[X? 4 = /°° 22 fy (o) di — 42

—0o0

Proof. By the theorem

7 = EIX - ) = [ (o= fxlo)do = [ 12 = 200 4 ) fxlo) da
= [ rx@rdo =2 [ fx@ydo s [ oo
= / 2? fx(x)de — 2p° + p* = / 2? fx(x) de — pi?

5.3 Catalog

As with discrete RV’s, two continuous RV’s defined on completely different
probability spaces can have the same density.

Definition 4. Two continuous random variables are identically distributed
if they have the same pdf.

There are certain densities that come up a lot. So we start a catalog of
them. Note that the mean and variance of the RV only depend on its pdf.

Uniform: (two parameters a,b € R with a < b) The uniform density on
la,b] is

L ifa<az<b
— b—a’ 1 — —
f(@) { 0, otherwise

We have seen the uniform distribution before. Previously we said that to
compute the probability X is in some subinterval [c, d] of [a, b] you take the
length of that subinterval divided by the length of [a,b]. This is of course
what you get when you compute

d d 1 d—c
dr — dr —
/Cfx(x) * /Cb—a v b—a




Next we find the mean and variance of the uniform distribution on [a, b].
The mean is

b b 2 2
u:/xf(x)dx:/bx Jr 1b a:a+b @)

—a 25 b—a 2

For the variance we have to first compute
b
E[X?] = / 2? f(x) dx (3)
We then subtract the square of the mean and find 6% = (b — a)?/12.

Exponential: (one real parameter A > 0 )

xe® ifr>0
f(:v)—{(), if 2 <0

Check that its total integral is 1. Note that the range is [0, 00).
One of the homework problems is to compute its mean and variance.

Normal: (two real parameters o > 0, u € R )

1 1 (fz—p 2
x) = exp [ —=
() = = p<2( = ))
The range of a normal RV is the entire real line. It is anything but obvious
that the integral of this function is 1. Try to show it.
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Cauchy:

1

f(ﬁ)zm

Example (skipped): Suppose X has the Cauchy distribution. Find the
number ¢ with the property that P(X > ¢) = 1/4.
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Example: Suppose X has the density

flo) = {cx(2—w) fo<z<2
0 otherwise

where ¢ is a constant. Find the constant ¢ and then compute the mean and
variance.
The gamma function is defined by

[(w) = /0 h e " do (4)

Integration parts shows that I'(w+1) = wI'(w). It then follows by induction
that for positive integers n, I'(n + 1) = nl.

The gamma distribution has range [0, 00) and depends on two parameters
A > 0,w > 0. The density is

AY w-1l A
f(&?) — {6(w) Xz e if 2 0 (5>

otherwise

In one of the homework problems we compute its mean and variance. You
should find that they are

w
L= 0 =73 (6)

5.4 Cumulative distribution function

In this section X is a random variable that can be either discrete or contin-
uous.

Definition 5. The cumulative distribution function (cdf) of the random vari-
able X 1is the function

Fy(z) = P(X < z)

Why introduce this function? It will be a powerful tool when we look at
functions of random variables and compute their density.

Example: Let X be uniform on [—1,1]. Compute the cdf.



T 2 3 4 5 6
fx(z) | 1/811/813/8|2/8]1/8

Example: Let X be a discrete RV whose pmf is given in the table.

Example: Compute cdf of exponential distribution.

Theorem 2. Let X be a continuous RV with pdf f(z) and cdf F(x). Then
they are related by

F(z) = / o
f@) = Flo)

Proof. The first equation is immediate from the def of the cdf. To get the
second equation, differentiate the first equation and remember that the fun-
damental theorem of calculus says

& [ rwd=rw

Theorem 3. For any random variable the cdf satisfies
1. F(x) is non-decreasing, 0 < F(x) < 1.
lim, , o F(z) =0, lim, ., F(z)=1.

For a continuous random variable the cdf is continuous.

For a discrete random wvariable the cdf is piecewise constant. The set
of points where it jumps is the range of X. If x is a point where it has
a jump, then the height of the jump is P(X = x).



Proof. 1 is obvious ....

To prove 2, let z,, — oo. Assume that z,, is increasing. Let F,, = {X <
x,}. Then E, is an increasing sequence of events. By the continuity of the
probability measure,

P(UX E,) = lim P(E,)

n—oo

Since x,, — 00, every outcome is in F, for large enough n. So U)° | E, = €.
So

lim F(z,) = lim P(E,) =1 (7)

n—oo n—o0

The proof that the limit as x — —oo is 0 is similar.
GAP
O

We will not need the following theorem, but a natural question is whether
all functions F' with the properties in the previous theorem are the cdf of
some random variable.

Theorem 4. Let F(x) be a function from R to [0,1] such that
1. F(x) is non-decreasing.
2. lim, o F(x) =0, lim, o, F(z) = 1.
3. F(x) is continuous from the right.

Then F(z) is the cdf of some random wvariable, i.e., there is a probability
space (2, F,P) and a random variable X on it such that F(x) = P(X < x).

The proof of this theorem is way beyond the scope of this course. In fact,
the resulting random variable need not be a discrete or continuous random
variable as we have defined them.

5.5 Function of a random variable

Let X be a continuous random variable and g : R — R. Then Y = ¢(X) is
a new random variable. We want to find its density. This is not as easy as
in the discrete case. In particular fy(y) isnot >0\ fx(z).



KEY IDEA: Compute the cdf of Y and then differentiate it to get the pdf
of Y.

Example: Let X be uniform on [0,1]. Let Y = X2. Find the pdf of Y.

End of lecture - Mon, Oct 9 (sort of)

Example: Let X be uniform on [—1,1]. Let Y = X?2. Find the pdf of Y.

Calculus review: The FTC says

& [ #wdu= s 0

Now let g(z) and h(x) be differentiable functions. What are

d g(x)
T f(u)du? 9)
L T, (10)
— w)du 10
dl’ h(z)

Example: Let X be uniform on [0,1]. Let A > 0. ¥ = —1In(X). Show Y’
has an exponential distribution.

Example: The “standard normal” distribution is the normal distribution
with =0 and 0 = 1. Let Z have a standard normal distribution. Define a
new RV by X = u+ oZ. Find the pdf of X.

Example: Find the mean and variance of the normal distribution.

Proposition 2. (How to write a general random number generator) Let X be
a continuous random variable with values in [a,b]. Suppose that the cdf F(z)
is strictly increasing on |a,b]. Let U be uniform on [0,1]. Let Y = F~Y(U).
Then X and'Y are identically distributed.



Proof.

Application:My computer has a routine to generate random numbers that
are uniformly distributed on [0, 1]. We want to write a routine to generate
numbers that have an exponential distribution with parameter \.

How do you simulate normal RV’s? Not so easy since the cdf cannot be
explicitly computed. More on this later.

When Y = g(X) and we know the pdf of X, then we have seen how to
compute the pdf of Y. If g is increasing on the range of X or decreasing on
the range of X, then there is a formula.

Theorem 5. Let g be strictly increasing or strictly decreasing on the range
of X. Assume also that g is differentiable. Then

) = fx(g7"(v) —gl(y)‘ (12)

where g~ is the inverse function of g, i.e., the function such that g~ (g(y)) =
Y.

Note that g~! is not 1/g. A formula from calculus relates the derivative
of the inverse function to the derivative of the original function. It says

o) =
ay? VT (W)

Example X is exponential with A = 1. Y = exp(—X). So g(y) =
exp(—y) and g~'(y) = —In(y). GAP

Proof of theorem GAP
5.6 Histograms and the meaning of the pdf

For a discrete RV the pmf f(z) has a direct interpretation. It is the proba-
bility that X = z. For a continuous RV, the pdf f(z) is not the probability
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that X = x (which is zero), nor is it the probability of anything. If § > 0 is
small, then

z+46
/—5 f(u)du =~ 25f(x)

This is P(x — 6 < X < x+ ). So the probability X is in the small interval
[ — §,2 4 0] is f(x) times the length of the interval. So f(z) is a probability
density.

Histogram are closely related to the pdf and can be thought of as “ex-
perimental pdf’s.” Suppose we generate N independent random samples
of X where N is large. We divide the range of X into intervals of width
Az (usually called “bins”). The probability X lands in a particular bin is
Pz < X <z+4 Azx) = f(z)Az. So we expect approximately N f(x)Ax of
our N samples to fall in this bin.

To construct a histrogram of our N samples we first count how many fall
in each bin. We can represent this graphically by drawing a rectangle for
each bin whose base is the bin and whose height is the number of samples in
the bin. This is usually called a frequency plot. To make it look like our pdf
we should rescale the heights so that the area of a rectangle is equal to the
fraction of the samples in that bin. So the height of a rectangle should be

number of samples in bin

N Az

With these heights the rectagles give the histogram. As we observed above,
the number of our N samples in the bin will be approximately N f(z)Axz,
so the above is approximately f(z). So if N is large and Az is small, the
histogram will approximate the pdf.

5.7 More on expected value

The material in this section will not be “on the test.”

For a continuous RV we defined the expected value E[X] to be [z fx(z) dx.
This is not really how it should be defined. There is a way to define E[X]
for any random variable and then prove that it in the case of a continuous
RV, it is given by [ fx(z)dz. A proper discussion of how to define E[X]
for any RV requires the theory of abstract Lebesgue integration which is way
beyond the level of this course. Nonetheless, we can still give a non-rigorous
explanation of how to define E[X].
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For a discrete RV X, the expected value is

E[X] =) afx(v)

We will use this definition to define the expected value for a continuous RV.
The idea is to write our continuous RV as the limit of a sequence of discrete
RV’s.

Let X be a continuous RV. We will assume that it is bounded. So there is
a constant M such that the range of X lies in [-M, M|, i.e., —-M < X < M.
Fix a positive integer n and divide the range into subintervals of width 1/n.
In each of these subintervals we “round” the value of X to the left endpoint
of the interval and call the resulting RV X,,. So X, is defined by

E+1
n

k k
Xp(w) =—, wherekistheinteger with — < X(w) <
n n

Note that for all outcomes w, | X (w) — X, (w)| < 1/n. So X,, converges to X
pointwise on the sample space (). In fact it converges uniformly on 2. The
expected value of X should be the limit of E[X,] as n — oc.

Definition 6. (Heuristic) For any random variable the expectation of E[X]
is limy, 00 B[ X,].

The random variable X, is discrete. Its values are k/n with k& running
from —Mn to Mn — 1 (or possibly a smaller set). So

Mn—1
k

BX]= Y - ()

Now

So



When n is large, the integrals in the sum are over a very small interval. In
this interval, z is very close to k/n. In fact, they differ by at most 1/n. So
the limit as n — oo of the above should be

Mn—1 k+1 0o

k:—ZMn /ﬁnme(m)dx:/_]\;fo(x)dx:/ z [x(x)dz

—00

The last equality comes from the fact that fy(x) is zero outside [—M, M].
The above is not a proof, but it should make the following plausible:

Theorem 6. Let X be a continuous RV. If we define E[X] to be lim,, . E[X,)],
then

E[X] = /Oo v (@) da

o0

We can now use these ideas to give a non-rigorous derivation of a theorem
we stated before:

Theorem 7. Let X be a continuous RV, g a function from R to R. Let
Y = ¢g(X). Then

E[Y] = E[g(X)] = / " gle) fxla) de

(e 9]

Proof. Since we do not know how to find the density of Y, we cannot prove
this yet. We just give a non-rigorous derivation. Let X, be the sequence of
discrete RV’s that approximated X defined above. Then g(X,,) are discrete
RV’s. They approximate g(X). In fact, if the range of X is bounded and g is
continous, then g(X,,) will converge uniformly to g(X). So E[g(X,,)] should
converges to E[g(X)].

Now ¢(X,,) is a discrete RV, and by the law of the unconscious statistician

Elg(Xa)] = Y 9(@) fx,(z) (13)

x
Looking back at our previous derivation we see this is

Mn—1 k+1

By = Y o) [T fele)ds

Mn—1 k+1

- > [T

k=—Mn n
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which converges to

/ o(@) fx (@) du (14)

]

Recall that for a discrete random variable that only takes on values in

0,1,2,---, we showed in a homework problem that
E[X]=) P(X >k (15)
k=0

There is a similar result for non-negative continuous random variables.

Theorem 8. Let X be a non-negative continuous random variable with cdf
F(z). Then

E[X] = /OOO [1— F(z)] dz (16)

provided the integral converges.

Proof. We use integration by parts on the integral. Let u(z) = 1— F(z) and
dv =dz. So du = — fdxr and v = z. So

/000 1— F(z)]de = x(1 — F(:E))|;°:0+/Ooo x f(z) dx = E[X] (17)

Note that the boundary term at oo is zero since F(x) — 1 as z — 0. ]

We can use the above to prove the law of the unconscious statistician for
a special case. We assume that X > 0 and that the function g is from [0, co)
into [0, 00), is strictly increasing, and ¢(0) = 0. Note that this implies that
g has an inverse. Then

E[Y] — /000[1 ~ Fy(2)]dz = /000[1 CP(Y < 2)|de (18)
= [ =P <ol = [T1-PX < @) s (19)
~ [T Fel s (20)
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Now we do a change of variables. Let s = gfl(x). So x = g(s) and dx =
g'(s)ds. So above becomes

/0 Tl - Fx()]¢(s) ds (21)

Now integrate this by parts to get

[1— Fx(s)] g(s)]220 + / " g(s) f(s) ds (22)

which proves the theorem in this special case.
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