1.1 Rules of Roots

The following rules are true for all x, y except where specified.

- $\sqrt{x^{2}}=|x|$
- $\sqrt{-1}=i$
- $\sqrt{-x}=i \cdot \sqrt{x}$
- $\sqrt{x} \cdot \sqrt{y}=\sqrt{x \cdot y}$
- $\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}} \quad$ when $y \neq 0$
- $\sqrt{x^{3}}=x \cdot \sqrt{x}$
- $\sqrt[3]{x^{3}}=x$
- $\sqrt[3]{x^{4}}=x \cdot \sqrt[3]{x}$

In general:

$$
\begin{array}{ll}
- & \sqrt{x}=x^{\frac{1}{2}} \\
- & \sqrt[n]{x}=x^{\frac{1}{n}} \\
- & \sqrt[n]{x^{m}}=x^{\frac{m}{n}}
\end{array}
$$

Things to be careful of:

- $\sqrt{x+y} \neq \sqrt{x}+\sqrt{y}$
- $\sqrt{x-y} \neq \sqrt{x}-\sqrt{y}$

1.2 Quadratic Formula

- Standard Form for quadratics is:

$$
a x^{2}+b x+c
$$

- Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

A general rule for plugging in the a, b, c in the quadratic formula is to put parenthesis around each value when you plug it in. This will help to keep the signs straight.

Created by Tynan Lazarus and Dawn Hess

1.3 Examples

1. Solve $2 x^{2}-8 x+6=0$ using the quadratic formula.

Solution 1: First, we notice and write that $a=2, b=-8$, and $c=6$. So,

$$
x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(2)(6)}}{2(2)}=\frac{8 \pm \sqrt{64-48}}{4}=\frac{8 \pm \sqrt{16}}{4}=\frac{8}{4} \pm \frac{\sqrt{16}}{4}=2 \pm \frac{4}{4}=2 \pm 1
$$

So, $x=2+1=3$ or $x=2-1=1$.
2. Find the zeros of the function $5 x^{2}+x-2$.

Solution: We want to find where $5 x^{2}+x-2=0$. Notice that this is not easily factorable, so we have to use the Quadratic Formula. So, using $a=5, b=1, c=-2$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(1) \pm \sqrt{(1)^{2}-4(5)(-2)}}{2(5)}=\frac{-1 \pm \sqrt{1+40}}{10}=\frac{-1 \pm \sqrt{41}}{10}=-\frac{1}{10} \pm \frac{\sqrt{41}}{10}
$$

These aren't very nice numbers, but we can't do anything about that. So, $x=-\frac{1}{10}+\frac{\sqrt{41}}{10}$ or $x=-\frac{1}{10}-\frac{\sqrt{41}}{10}$.
3. Solve $x^{2}+2 x+2=0$.

Solution: Since this is not easily factorable, we need to use the quadratic formula. First, we identify $a=1, b=2$, and $c=2$. So,

$$
x=\frac{-(2) \pm \sqrt{(2)^{2}-4(1)(2)}}{2(1)}=\frac{-2 \pm \sqrt{4-8}}{2}=\frac{-2 \pm \sqrt{-4}}{2}=-\frac{2}{2} \pm \frac{\sqrt{-4}}{2}=1 \pm \frac{2 i}{2}=1 \pm i
$$

So $x=1 \pm i$. Thus, we have complex roots. Hence, $x=1+i$ or $x=1-i$.
4. Find the roots of the following polynomial using the Quadratic Formula

$$
P(x)=-2 x^{2}+4 x-2
$$

Solution: Notice that $a=-2, b=4$, and $c=-2$. So,

$$
x=\frac{-(4) \pm \sqrt{(4)^{2}-4(-2)(-2)}}{2(-2)}=\frac{-4 \pm \sqrt{16-16}}{-4}=\frac{-4}{-4} \pm \frac{0}{-4}=1 \pm 0=1
$$

So $x=1$ is the only root of this polynomial.
5. Solve $x^{2}+8 x+17=0$.

Solution: Notice that $a=1, b=8, c=17$. So,

$$
x=\frac{-(8) \pm \sqrt{(8)^{2}-4(1)(17)}}{2(1)}=\frac{-8 \pm \sqrt{64-68}}{2}=\frac{-8}{2} \pm \frac{\sqrt{-4}}{2}=-4 \pm \frac{2 i}{2}=-4 \pm i
$$

So $x=-4+i$ or $x=-4-i$.

