1.1 Sequences

Definition of convergence: We say a sequence a_{n} converges to L (denoted $a_{n} \rightarrow L$) if for all $\varepsilon>0$, there exists an N such that for all $n>N,\left|a_{n}-L\right|<\varepsilon$.

In what follows, n is approaching infinity, c is any constant, and p is a positive constant.
Convergent sequences:

- $\frac{1}{n} \rightarrow 0$
- $\frac{\ln (n)}{n} \rightarrow 0$
- $\frac{(-1)^{n}}{n} \rightarrow 0$
- $c-\frac{1}{n} \rightarrow c$
- $c^{n} \rightarrow 0$ if $|c|<1$
- $c^{-n} \rightarrow 0$ if $|c|>1$
- $p^{1 / n} \rightarrow 1$
- $\sqrt[n]{n} \rightarrow 1$
- $\left(1+\frac{c}{n}\right)^{n} \rightarrow e^{c}$
- $\frac{c^{n}}{n!} \rightarrow 0$

1.2 Hierarchy of Functions

We consider how fast different types of functions approach infinity.

$$
\cdots<\ln (\ln (n))<\ln (n)<n^{1 / k}<n^{k}<k^{n}<n!<n^{n}<n^{n^{n}}<\cdots
$$

Created by Tynan Lazarus

1.3 Series

- Divergence Test

If $a_{n} \nrightarrow 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges. In other words, if $\lim _{n \rightarrow \infty} a_{n}$ does not exist or $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ will diverge.

- Geometric Series
$a+a r+a r^{2}+a r^{3}+\cdots+a r^{n}+\cdots=\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r} \quad|r|<1, a \neq 0$

- Harmonic Series

The Harmonic Series $\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$ diverges.

- p-Series Test

The p-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \rightarrow \begin{cases}\text { converge } & \text { if } p>1 \\ \text { diverge } & \text { if } p \leq 1\end{cases}
$$

- Integral Test

Let $\left\{a_{n}\right\}$ be a sequence of positive terms. Suppose f is a continuous, positive, decreasing function, and that $a_{n}=f(n)$. Then the series $\sum_{n=1}^{\infty} a_{n}$ and the integral $\int_{1}^{\infty} f(x) d x$ both converge or both diverge.

- Comparison Test

Let $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}, \sum_{n=1}^{\infty} c_{n}$ be series with nonnegative terms. Assume there exists an $M>0$ such that for all $n>M, a_{n} \leq b_{n} \leq c_{n}$. Then
(i) If $\sum_{n=1}^{\infty} c_{n}$ converges, then $\sum_{n=1}^{\infty} b_{n}$ also converges.
(ii) If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ also diverges.

Created by Tynan Lazarus

- Limit Comparison Test

Let $\sum a_{n}$ and $\sum b_{n}$ be series with strictly positive terms.

1. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c>0$, then $\sum a_{n}$ and $\sum b_{n}$ both converge or both diverge.
2. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges as well.
3. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges as well.

- Ratio Test

Let $\sum a_{n}$ be a series with strictly positive terms, and suppose $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\mathcal{R}$.
(a) If $\mathcal{R}<1$, then $\sum a_{n}$ converges.
(b) If $\mathcal{R}>1$, then $\sum a_{n}$ diverges.
(c) If $\mathcal{R}=1$, the test is inconclusive.

- Root Test

Let $\sum a_{n}$ be a series with $a_{n} \geq 0$, and suppose $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\mathcal{R}$.
(a) If $\mathcal{R}<1$, then $\sum a_{n}$ converges.
(b) If $\mathcal{R}>1$, then $\sum a_{n}$ diverges.
(c) If $\mathcal{R}=1$, the test is inconclusive.

- Alternating Series Test

The alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\cdots
$$

Converges if all three of the following conditions are satisfied:

1. All the b_{n} 's are positive
2. $b_{n+1} \leq b_{n}$ for all $n>N$
3. $\lim _{n \rightarrow \infty} b_{n}=0$

- Absolute Convergence Test

If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$.

Created by Tynan Lazarus

1.4 Strategies

1. The first thing we should check is the Divergence Test. Unless $a_{n} \rightarrow 0$, the series diverges.
2. If we can spot a Geometric Series, then we know right away if it converges or diverges since $\sum a r^{n}$ converges only if $|r|<1$; otherwise it diverges.
3. p-series are also easy to spot and check convergence. $\sum 1 / n^{p}$ converges if $p>1$; otherwise it diverges.
4. If the series has nonnegative terms: Try the Integral Test, Ratio Test, or Root Test. Try comparing to a known series with the Comparison Test or the Limit Comparison Test.
5. Series with some negative terms: Does $\sum\left|a_{n}\right|$ converge? If yes, so does $\sum a_{n}$ since absolute convergence implies convergence.
6. Alternating series: $\sum a_{n}$ converges if the series satisfies the conditions of the Alternating Series Test.
