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GENERALIZATIONS OF CONTINUED FRACTIONS

J. A. GILBERT

Abstract. We investigate continued fractions to approximate numbers in the
complex plane. We develop an algorithm to approximate complex numbers,
then prove some analogous theorems to those that exist for the real case. Also,
we analyze the precision as one carries out more steps. Finally we present some
conjectures to how the continued fraction of certain classes of numbers behave
in the complex plane.

1. Background

Continued fractions have been around for hundreds of years, dating back to
Leonardo Fibonacci in his work Liber abaci published in 1202 [1]. One way to
think of the continued fraction of a real number is to consider it as an extension of
the Euclidean algorithm. We are able to express any real number as a sequence of
integers

x = [a1, a2, a3, a4, ...] , ai ∈ Z

where

x = a1 +
1

a2 +
1

a3 +
1

a4 +
1
...

.

This is a simple continued fraction representation, that is with 1’s in the numerator.
For the rest of the paper when we write continued fraction we will mean simple
unless otherwise noted.

In our paper we first propose a well known algorithm for computing continued
fractions in the reals. We discuss some important theorems and results that hold
in the reals. We then explore what changes are needed to have the algorithm
function properly for calculating complex continued fractions. We then go on to
prove analogous results to the real case for the complex case.

We then propose some future lines of research to be completed. These include
some conjectures on how complex continued fractions behave. We also will examine
some predictions for how precise a continued fraction approximation is, along with
how the rate of precision grows with the number of steps taken. Then we conclude
some potential further generalizations that could be made to continued fractions.

First let us explore how to compute a continued fraction in the real case. It is
of note how similar this algorithm is to that of the Euclidean algorithm.
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2. Algorithm

Input: α and number of steps n
1. a1 := �α�
2. p1 := a0

3. q1 := 1
4. for i from 1 to n {
5. α := 1

α−ai

6. ai+1 := �α�
7. if i = 1 then
8. pi := a1a2 + 1
9. qi := a2

10. else
11. p := aiai+1 + pi−1

12. q := ai+1qi + qi−1

13. }
14. output {an}, {pn}, {qn}

The sequence {an} is what is to be expected, that is the sequence that represents
the continued fraction. Now pn

qn
is the approximation of the number α we have

calculated to the nth step. What is of note of this approximation is that there is
no denominator less than qn that provides a better approximation.

In fact we have that(
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
an 1
1 0

)

However, it is much faster to keep track of the pi and qi throughout the algorithm
than to compute them through matrix representation later.

Now we will consider some important algorithms for the real case.

3. Known Theorems for the Reals

Theorem 3.1. A simple continued fraction is finite if and only if it represents a
rational number.

Theorem 3.2. Every irrational number has a unique infinite simple continued
fraction representation.

Theorem 3.3. A simple complex continued fraction is periodic if and only if it is
the solution to a quadratic equation with integer coefficients.

4. Computing Complex Continued Fractions

Now let us examine our original algorithm for computing continued fractions. We
will be specific about what operations we performed. On line 1, 6 we take the floor
function of the number we are given to compute its continued fraction. Then on
line 5, 8, 11, 12 we use addition along with on line 5 using an additive inverse. Also
on lines 8, 11, 12 we use multiplication along with on line 5 taking a multiplicative
inverse. All these operations besides the floor function exist in any field.

Now let us explore what it means to find the greatest integer less than a number.
First it is necessary to determine what we mean by an integer. In the complex
numbers for an integer we mean a Gaussian integer that is a number of the form
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a + bi with a, b ∈ Z and i2 := −1. Let z be a complex number. Naively we could
take the floor to be

�z� := ��z� + ��z�i.
However, this is not a good floor since there may exist Guassian integers greater
than what we found that are still less than z.

We will present the algorithm we use to find the floor of a complex number, then
we will examine it.

Input: z
1. a := �z − ��z�
2. b := �z − ��z�
3. if a + b < 1 then x := 0
4. if a + b >= 1 and a >= b then x := 1
5. if a + b >= 1 and a < b then x := i
6. output ��z� + i��z�+ x

This floor gives us the largest Guassian integer that has magnitude less than the
input while still remaining within a radius of one of our input. This takes care of
finding a Gaussian number that doesn’t have one greater than it, yet keeps us close
to the number, which is exactly what we want. However, there is one important
difference between this and the floor for a real number. The floor function is in
fact a function, that is it gives a unique integer as the answer. In contrast the floor
for a complex number is a relation and not a function, it is arbitrary that we chose
when a = b to add 1 we could have just as easily decided to add i and have gotten
what we “wanted”. The floor function for the reals returns a greatest integer, the
complex returns a maximal Gaussian integer. Now let us examine how this affects
some of the analagous theorems.

5. Analogous Theorems

Conjecture 5.1. A simple continued fraction is finite if and only if it represents
a rational number in the complex plane, i.e. a number of the form r + si with
r, s ∈ Q.

Conjecture 5.2. Every irrational number has an infinite simple continued fraction
representation.

This is no longer necessarily unique in general since the floor in the complex
plane is not unique.

Conjecture 5.3. A simple complex continued fraction has a periodic representa-
tion if and only if it is the solution to a quadratic equation with Guassian integer
coefficients.

We will go on to prove these results in our follow up to this paper.

6. A Small Example

Let us find the the continued fraction representation of e
2
3πi, which will be peri-

odic since it is the root of a degree two polynomial with Guassian integer coefficients.
Set α := e

2
3 πi = −.5 + (.8660 . . .)i

a1 := �α� = −1 + i
α := 1

α−a1
= 1.8660 . . . + .5i
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a2 := �α� = 2
α := 1

α−a2
= −.5 − (1.8660 . . .)i

a3 := �α� = −1 − 2i
α := 1

α−a3
= 1.8660 . . .− .5i

a4 := �α� = 2 − i
α := 1

α−a4
= −.5 − (1.8660 . . .)i

Since α is now back to being equal to what it once was we know that the rest of
the solution will be periodic. Thus

e
2
3πi = −1 + i +

1

2 +
1

−1 − 2i +
1

2 − i +
1

−1 − 2i +
1

2 − i +
1
...

7. Future Work

Now that we have found an appropriate function that computes complex contin-
ued fractions and have numerical evidence that our conjectures hold we must prove
those.

We will study the rate of convergence of our algorithm, and determine some
estimates for how precise it is for how many steps are carried out. It is also worth
exploring whether there exist another function that converges faster than the one
we have already found.

Since we have implemented our algoirthm into maple. We will explore if there
any interesting patterns that could be detected for some continued fraction. We
already know that numbers that can be written as a degree two polynomial with
Gaussian integers have periodic continued fraction representations.

A further step would be to consider other contexts in which the concept of
continued fractions can be generalized. One can begin with an integral domain
D, an associated quotient field F and an algebraic extension K of F all with an
appropriate topology. If D is an integral domain, then an element d ∈ D is a divisor
of an element c ∈ D if there exists a b ∈ D such that d = bc. An element a is a
greatest common divisor of b and c if given any other divisor d of b and c we have
that d is a divisor of c. In an integral domain is called a greatest common divisor
domain if there exists a greatest common denominator for all pairs of nonzero a and
b. The next thing we might desire is a way to express the greatest common factor
of a and b as a linear combination of a and b. The integers, for example satisfy this
property. Any greatest common divisor domain which satisfies the second property
is known as a Bezout domain. From here, we would like to ask the same questions
that we asked for continued fractions of complex numbers in terms of Gaussian
integers.

References

[1] Strayer, James K. Elementary Number Theory. PWS Publishing Company 1994.


