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Abstract

Continued fractions in R have a single definition and algorithms for
approximating them are well known. There also exists a well known
result which states that

√
m, m ∈ Q, always has a periodic continued

fraction representation. In Qp, the field of p-adics, however, there are
competing and non-equivalent definitions of continued fractions and
no single algorithm exists which always produces a periodic continued
fraction for

√
m. In Jerzy Browkin’s 1978 and 2000 papers, Contin-

ued Fractions in Local Fields, I and II, respectively, Browkin presents
two definitions for a p-adic continued fraction and presents several al-
gorithms for computing continued fraction approximations to p-adic
square roots with the end-goal of finding periodic continued fraction
expansions. This paper will serve as an introduction to p-adic numbers
and as an exploration of the definitions and algorithms associated with
p-adic continued fractions.

1 Definitions

Definition: Cauchy Sequence: Let {xn}n∈N be a sequence. Then,
{xn}n∈N is a Cauchy Sequence if

for all ε > 0 there exists N ∈ N such that, for all n ≥ N , |xn − xn+1| < ε.

Note that the summation of a Cauchy Sequence,
∑∞

i=0 xi, converges.

Definition: Valuation: Let K be a field. A valuation on K is a
function | · | : K −→ R with the following properties:

1. |a| ≥ 0 for all a ∈ K, and |x| = 0 if and only if x = 0.

2. |a ∗ b| = |a| · |b| for all a, b ∈ K.
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3. |a + b| ≤ |a|+ |b| for all a, b ∈ K.

Specifically, if we take K = Q, then a ∈ Q can be written as a = a′

b pn for a
prime p where p does not divide a or b. The valuation | · |p is then given by:

|x|p :=

{
1
pn if x 6= 0,

0 if x = 0.

Definition: Metric: A metric space is a space K with a function
d : K ×K −→ R such that:

1. d(x, y) ≥ 0, for all x, y ∈ K.

2. d(x, y) = d(y, x), for all x, y ∈ K.

3. d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ K.

In particular, it can be shown that |a−b|p is a valuation on Qp, for a, b ∈ Qp.

Definition: Completion: Let K be a metric space with a metric d.
Let K̄ be the set of all Cauchy sequences in K. We then define the equiv-
alence relation between Cauchy sequences, ∼, as xn ∼ yn if the sequence
{x0, y0, x1, y1, . . . , xn, yn, . . .} is also a Cauchy sequence. Let K̂ be the set
of all equivalence classes in K̄. The metric d then extends like so:

d({xn}, {yn}) = lim
n→∞

d(xn, yn).

K̂ is called the completion of K.

Definition: Qp: Given a prime p, the p-adic integers, Zp, are obtained
by taking the completion of Z with respect to the metric induced by the
valuation | · |p. The field of p-adic rationals, Qp, is the fraction field of Zp.
Note that, as a result of the definition of completion, all α ∈ Qp can be
written

α =
∞∑

i=−r

ai · pi, ai ∈ {1, 2, . . . , p− 1}. (1)

Definition: Real Continued Fraction: A real continued fraction is
a fraction of the form

a0 +
1

a1 + 1
a2+ 1

a3+...

,

with ai ∈ R.
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Definition: p-adic Continued Fraction: Browkin presents two non-
equivalent definitions of a p-adic continued fraction. The first resembles the
definition of a real continued fraction:

α = b0 +
a0

b1 + a1

b2+
a2

b3+...

,

with bi ∈ {1, 2, . . . , p − 1}, ai = pα·j , and ai ≥ 1 for i ≥ 1. The second
definition instead assumes that ai = 1 for i ≥ 0 and

bi ∈ Z
[
1
p

]
∩

(
−p

2
,
p

2

)
= {−p− 1

2
, . . . ,−1, 0, 1, . . . ,

p− 1
2

}

2 Algorithms for Continued Fractions

For α ∈ Qp, with α given as in (1), define the map s : Qp −→ Q to be

s(α) =
0∑

i=−r

ai · pi, an ∈ {0,±1, . . . ,±p− 1
2

}. (2)

The first algorithm presented procedes as in the classical definition of a
real continued fraction.

2.1 Algorithm I

Given α ∈ Qp, we define inductively sequences {an} and {bn} as fol-
lows:

[Step 1] i = 0. Let a0 = α and b0 = s(α).

[Step 2] If ai = bi then ai+1 and bi+1 are undefined. If this
is the case, quit the algorithm.

[Step 3] i = i + 1. Let ai = (ai−1 − bi−1)−1 and bi = s(ai). Go
to Step 2.

The resulting sequence {bn}, n ∈ N, is defined to be the p-adic contin-
ued fraction of α.

For α ∈ Qp, define

s1(α) = s(α) =
0∑

i=−r

ai · pi and s′1(α) = s1(α)− p · sign(s1(α)),
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with ai as in (2). Similarly, define

sn(α)
−1∑

i=−r

ai · pi and s′2(α) = s2(α)− sign(s2(α)).

With these two new definitions in hand, we define the next algorithm.

2.2 Algorithm II

Let s′′1 = s1 and

s′′2(α) =

{
s2(α) v(α− s2(α)) = 0
s′2(α) otherwise

Where v is the p-adic valuation. Given α ∈ Qp, we define inductively
sequences {an} and {bn} as follows:

[Step 1] i = 0 Let a0 = α and b0 = s′′1(a0).

[Step 2] If ai = bi, then ai and bi are undefined. If this is
the case, quit the algorithm.

[Step 3] i = i + 1. Let ai = (ai−1 − bi−1)−1 and bi = s′′2(ai).

[Step 4] If ai = bi, then ai and bi are undefined. If this is
the case, quit the algorithm.

[Step 5] i = i + 1. Let ai = (ai−1 − bi−1)−1 and bi = s′′1(ai). Go
to Step 2.

Continuing in this manner, using s′′1 for even i and s′′2 for odd i, we
obtain a sequence {bn}, n ∈ N. This sequence is the p-adic continued
fraction of α.

3 Additional Algorithms

3.1 Evaluating a Continued Fraction

When finding continued fraction representations of numbers, it is useful to
have a way to evaluate these continued fractions. Thus, a standard algorithm
for evaluating continued fractions is introduced:

Define:
An

Bn
= [b0, b1, . . . , bn].
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With

A0 = b0, A1 = b0 · b1 + 1, An = bn ·An−1 + An−2, for n ≥ 2,

B0 = 1, B1 = b1, Bn = bn ·Bn−1 + Bn−2, for n ≥ 2.

Then the fraction An
Bn

is the evaluated continued fraction approximation of
a number. The true usefulness of this algorithm becomes apparent when it
is necessary to evaluate a continued fracton as it is computed. A situation
in which this is necessary will soon arise.

3.2 Period Detection

In order to test for the periodicity of continued fraction expansions, a search
algorithm is required. Thus, a standard linear period search algorithm was
implemented:

Starting with a window size of 1, the window is positioned over a part
of the sequence and what is contained in the window is scanned into
memory. What has been scanned is then compared to other parts
of the sequence to detect if it is repeated. If this fails for the initial
position, the position is offset by 1, and the process repeats. If this
fails for all positions, the window size is increased by 1 and the position
is reset to the initial starting point. If this fails for all combinations of
window position and window size, the sequence is decided to not have
a period.

3.3 Periodicity Prediction

The problem with using the standard continued fraction algorithm (Algo-
rithm I) in Qp is that the floor function is not clearly defined. Algorithm
II as well as III and IV (not appearing in this paper) are still the stan-
dard algorithm, but with slightly more sophisticated floor functions. The
implementation of these floor functions is made more complex by Browkin’s
choice of p-adic integers:

Zp = Z
[
1
p

]
∩

(
−p

2
,
p

2

)
= {−p− 1

2
, . . . ,−1, 0, 1, . . . ,

p− 1
2

}.

Since this choice of Zp is not natively supported by any computational num-
ber systems, various work-arounds had to be developed. While attemping
to implement the floor function and to debug it, I noticed that when using a
particular floor function, the continued fractions produced were either very
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close to the desired number, or very far away. I also noticed that the cases
when the continued fraction evaluated to a very close number was when the
continued fractions had a period. This led to the redesign of Algorithm I
with the focus on only the evaluation and not the sequence representing the
continued fraction.

The floor function which produced this was the following:

For α ∈ Qp; α =
∑∞

i=−r ai · pi, with ai ∈ Zp = {0, 1, . . . , p− 1}.

If
∑0

i=−r ai · pi > p−pr

2 , then return −p +
∑0

i=−r ai · pi > p−pr

2 as the
floor of α.

The partial sum is compared to p−pr

2 =
∑0

i=−r
p−1
2 · pi since any number

greater than the summation will have a negative representation for i = 0 in
Browkin’s definition.

4 Data

4.1 Periodic Continued Fractions

In Browkin’s 2000 paper, he presented data for continued fractions of
√

(m),
for 1 ≤ m ≤ 100. The data that I have gathered agrees with his for the
displayed results; however, I went further and analyized the continued frac-
tions for periods for

√
(m), m ≤ 10000. The following is the list of periodic

continued fractions found during this search(m ≤ 100 are omitted):

4.1.1 Algorithm I

sqrt(104): Period begins at term 3 and is 6 terms long:
List([9/5, -11/5, 12/5, -11/5, 9/5, -49/25])

sqrt(111): Period begins at term 3 and is 10 terms long:
List([-2/5, 2/5, -9/5, 1/5, 4/5, 2/5, -2/5, 9/5, -1/5, -4/5])

sqrt(119): Period begins at term 3 and is 14 terms long:
List([6/5, 9/5, 2/5, -6/5, -7/5, -8/5, 12/5, -6/5, -9/5, -2/5,

6/5, 7/5, 8/5, -12/5])

sqrt(819): Period begins at term 3 and is 24 terms long:
List([-3/5, -3/5, -7/5, -7/5, -7/5, -3/5, -3/5, -2/5, -2/5,

-4/5, -44/25, 6/5, -129/125, -1/5, -8/5, 4632/3125,
-8/5, -1/5, -129/125, 6/5, -44/25, -4/5, -2/5, -2/5])

sqrt(1014): Period begins at term 3 and is 8 terms long:
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List([-8/5, 3/5, -2/5, -11/5, 7/5, -4/5, -9/5, -8/5])

sqrt(1139): Period begins at term 3 and is 6 terms long:
List([-12/5, 4/25, -42/25, 54/125, -9/5, -8/5])

sqrt(1439): Period begins at term 3 and is 34 terms long:
List([-9/5, -2/5, 2/5, -2/5, 9/5, -6/5, 12/5, 1/5, -3/5, 1/5,

12/5, -6/5, 9/5, -2/5, 2/5, -2/5, -9/5, 7/5, 6/5, -6/5,
1/5, -38/25, -6/5, -9/5, -7/5, 133/125, -7/5, -9/5, -6/5,
-38/25, 1/5, -6/5, 6/5, 7/5])

sqrt(1596): Period begins at term 3 and is 14 terms long:
List([3/5, 8/5, -2/5, 31/25, -9/5, 22/125, 12/5, -3/5, -8/5,

2/5, -31/25, 9/5, -22/125, -12/5])

sqrt(2079): Period begins at term 3 and is 8 terms long:
List([53/25, -4/5, -7/5, -7/25, -4/5, 3/5, -11/5, -62/25])

sqrt(3864): Period begins at term 3 and is 8 terms long:
List([-8/5, -279/125, -8/5, -3/5, -4/5, 3471/3125, -4/5, -3/5])

sqrt(7719): Period begins at term 3 and is 12 terms long:
List([8/5, 1/5, 11/5, 1/5, 8/5, -7/5, 3/5, -8/5, 61/125, -8/5,

3/5, -7/5])

4.1.2 Algortihm II

sqrt(104): Period begins at term 2 and is 12 terms long:
List([1/25, -1, 1/5, -1, -1/5, -1, -2/5, -1, -1/5, -1, 1/5,

-1])

sqrt(109): Period begins at term 7 and is 96 terms long:
List([1, 2/5, -2, -2/5, 2, 1/5, 2, 1/5, -1, -1/5, -1, 4/5, -1,

-1/5, -1, 1/5, 2, 1/5, 2, -2/5, -2, 2/5, 1, 2/5, 1, -1/5,
-1, -1/5, -1, 11/25, 1, -2/5, 1, 4/5, -1, -2/5, 1, -2/5,
-1, 23/25, -1, 4/5, -1, -3/5, 1, 1/5, 1, -2/5, 1, -21/25,
1, -8/25, 1, 2/5, 1, -2/5, -1, 1/5, -1, -6/25, 2,
116/125, -1, -2/5, 1, -2/5, 1, -2/5, 1, 2/5, 1, -1/5, 2,
-1/5, -1, 1/5, -1, 1/5, -2, -2/5, -1, -2/25, -1, -2/5, 1,
-4/5, 1, -3/25, -1, 2/5, -1, -1/5, -1, -1/5, -2, -3/5])

sqrt(114): Period begins at term 3 and is 10 terms long:
List([1, 2/5, -1, 2/5, 1, -1/5, 1, 1/5, -1, -4/5])

sqrt(116): Period begins at term 2 and is 18 terms long:
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List([-1/5, 2, 1/5, 2, -2/5, -1, -2/5, 1, -2/5, 1, -2/5, -1,
-2/5, 2, 1/5, 2, -1/5, 2])

sqrt(126): Period begins at term 2 and is 2 terms long:
List([2/125, 2])

sqrt(129): Period begins at term 19 and is 6 terms long:
List([-1, 4/5, -1, -1/5, -2, 3/5])

sqrt(136): Period begins at term 41 and is 18 terms long:
List([-1, -1/5, -2, -12/25, -1, 2/5, 2, -1/5, -2, 11/25, -2,

-1/5, 2, 2/5, -1, -12/25, -2, -1/5])

sqrt(139): Period begins at term 2 and is 6 terms long:
List([2/5, -1, -8/25, 2, -1/5, -1])

sqrt(149): Period begins at term 31 and is 54 terms long:
List([1, 2/5, 2, 1/5, -1, -1/5, 1, -4/5, 1, 56/125, 2, 1/5, 2,

1/5, 2, 1/5, -1, 1/5, -1, 2/5, -1, -9/25, -2, -2/5, 2,
-4/5, 1, -1/5, 2, 2/5, -2, 2/5, 2, -3/5, 1, -1/5, -2,
-4/5, 1, -1/5, -2, 1/5, -1, 1/5, 1, 1/5, -1, -2/5, 1,
-8/25, 1, -2/5, 2, -3/5])

The list of periodic continued fractions observed goes on for Algorithm
II, however it is too extensive to be reproduced here. The m such that√

m has a periodic continued fraction in Algorithm II are as follows:

6, 11, 14, 21, 24, 26, 29, 31, 34, 51, 54, 56, 61, 69, 79,
84, 91, 104, 109, 111, 114, 116, 126, 129, 136, 139, 149,
156, 161, 171, 176, 206, 221, 224, 244, 249, 251, 254, 269,
296, 311, 319, 336, 349, 371, 374, 381, 389, 394, 411, 446,
454, 456, 474, 496, 499, 511, 524, 536, 549, 556, 561, 579,
624, 626, 659, 696, 704, 711, 714, 741, 819, 831, 836, 851,
854, 861, 869, 909, 944, 979, 986, 1001, 1056, 1094, 1096,
1111, 1136, 1141, 1199, 1219, 1224, 1226, 1239, 1251, 1291,
1304, 1331, 1341, 1371, 1401, 1404, 1439, 1476, 1494, 1499,
1551, 1566, 1569, 1599, 1609, 1644, 1651, 1671, 1689, 1721,
1729, 1771, 1786, 1821, 1824, 1866, 1896, 1904, 1914, 1916,
1949, 1966, 1976, 1991, 2046, 2056, 2076, 2099, 2126, 2131,
2139, 2196, 2219, 2224, 2231, 2246, 2259, 2261, 2279, 2281,
2286, 2314, 2326, 2399, 2409, 2426, 2436, 2439, 2441, 2466,
2474, 2496, 2531, 2536, 2604, 2614, 2629, 2636, 2639, 2699,
2716, 2724, 2726, 2731, 2744, 2754, 2764, 2781, 2814, 2819,
2869, 2894, 2926, 2954, 2981, 3021, 3036, 3039, 3104, 3114,
3116, 3126, 3146, 3154, 3166, 3174, 3251, 3284, 3299, 3341,
3346, 3411, 3419, 3426, 3441, 3456, 3474, 3506, 3659, 3784,
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3791, 3796, 3814, 3816, 3856, 3861, 3941, 3951, 3999, 4039,
4106, 4121, 4161, 4289, 4291, 4314, 4326, 4331, 4334, 4379,
4389, 4431, 4484, 4506, 4519, 4606, 4704, 4709, 4726, 4771,
4776, 4824, 4881, 4909, 4944, 4984, 5024, 5119, 5159, 5204,
5229, 5249, 5254, 5276, 5301, 5304, 5311, 5344, 5424, 5456,
5466, 5481, 5506, 5551, 5666, 5701, 5714, 5781, 5814, 5856,
5936, 5951, 5961, 5976, 5979, 6054, 6059, 6174, 6186, 6191,
6221, 6246, 6251, 6276, 6279, 6304, 6309, 6329, 6361, 6369,
6454, 6459, 6474, 6496, 6559, 6636, 6706, 6801, 6819, 6826,
6841, 6959, 6961, 6976, 7034, 7106, 7126, 7259, 7284, 7319,
7349, 7359, 7386, 7419, 7476, 7489, 7494, 7496, 7521, 7556,
7564, 7576, 7581, 7656, 7741, 7746, 7786, 7866, 7871, 7876,
7879, 7896, 7906, 7909, 7956, 8034, 8059, 8071, 8074, 8086,
8129, 8141, 8161, 8199, 8201, 8246, 8294, 8301, 8334, 8354,
8441, 8466, 8541, 8546, 8596, 8606, 8639, 8749, 8754, 8804,
8829, 8921, 8924, 8996, 9026, 9069, 9231, 9246, 9344, 9411,
9446, 9479, 9691, 9714, 9746, 9751, 9819, 9864, 9874, 9906,
9914, 9929

4.2 Results of Predictive Algorithm

The following are the numbers whose continued fraction expansion converges
for the specialized floor function outlined above:

6, 11, 14, 21, 24, 34, 54, 69, 74, 76, 94, 99, 104, 111,
119, 819, 1014, 1139, 1439, 1596, 2079, 2711, 3864, 4054,
7719.

Note that these are exactly those numbers (less than 10000) for which Al-
gorithm I produces periodic continued fraction expansions. Furthermore,
the analysis performed for Algorithm I above required approximately 6 days
of computation. The analysis performed using this predictive algorithm
required approximately 45 minutes.
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