
Combinatorial Ricci flows on abstract
manifolds

Alex Henniges
Thomas Williams

Mitch Wilson

University of Arizona Undergraduate Research Program
Supervisor: Dr. David Glickenstein

July 10, 2008

Table of Contents

1 Introduction 3

2 Triangulations 3
2.1 Introduction . 3
2.2 Definitions . 4
2.3 Circle packing . 6
2.4 Duals . 7

3 Ricci flow 8
3.1 Background . 8
3.2 Definition . 9
3.3 Expectations . 11

4 Program/Code 12
4.1 Structure . 12
4.2 calcFlow . 14
4.3 Morphs . 16

4.3.1 Flips . 16
4.3.2 Other Transfigurations 17

5 Results 18
5.1 Flows . 18
5.2 Specific cases . 20
5.3 Convergence speeds . 23

6 Future work 25
6.1 3-D . 25
6.2 Circle packing expansions . 26
6.3 Hyperbolic/ spherical triangulations 26

7 Conclusion 27

8 Appendix 29
8.1 Derivation of Eq. (6) . 29
8.2 Remarks on Runge-Kutta method for solving Eq. (8) 30
8.3 Data Plots . 30
8.4 Code Examples . 33

2

1 Introduction

The purpose of this project is to provide a method for examining the com-
binatorial Ricci flow on various compact manifolds in two, and potentially
three, dimensions. This is a flow that is performed upon triangulations that
are endowed with a length structure. For computation purposes, this requires
a data structure which will encode these triangulations. The design of this
data structure will be fundamental in the development of this project. The
program will be written in C++.

In this paper we will discuss many topics we learned and worked on, beginning
in

∮
2 with an introduction to triangulations and their properties. Then

we will establish the definition of combinatorial Ricci flow and its use in
our research. That will be followed by a discussion of how the program is
structured as well as an explanation of several functions that were created in∮

4. After this we will be ready to present the results and analysis we have
obtained up to this point. Lastly, we will provide areas of future work in
combinatorial Ricci flow and for this project.

2 Triangulations

2.1 Introduction

Suppose you are asked to construct the surface of a sphere with as few pieces
as possible. You could make a number of possible shapes, such as a cube or
a soccer ball. While both of these shapes are discrete in nature, they can be
used to approximate a round, continuous sphere. The most basic Euclidean
approximation of the surface of a sphere is the boundary of a tetrahedron.
Using only four vertices, six edges, and four faces, the tetrahedron is able
to give us a surface that represents the surface of a sphere. Naturally, if we
add more vertices, we are able to better illustrate our shapes through greater
refinement. Similarly, in modern video games and Hollywood movies, vari-
ous shapes are generated using polygons of many different sizes that mold to
form a graphically rendered object. For these and all shapes, we will focus
on building them solely out of triangles. Since any regular polygon can be
broken up into triangles, we can essentially represent any shape using this
method. We define a shape as triangulable if we can connect all triangles in

3

Figure 1: An example of a triangulation. The triangles can be folded up into
the boundary of a tetrahedron.

a particular fashion such that they create a closed 2-dimensional surface.

2.2 Definitions

We begin by providing the definition of a manifold. A manifold is defined as
any topological space containing points whose neighborhoods are topologi-
cally equivalent to the open unit ball, or as we say resemble Euclidean space.
The idea of manifolds is broad enough to encompass many different types
of spaces that may exist in n dimensions. We may classify different types
of manifolds by topological equivalence. One term we can use to generally
describe manifolds is ”locally Euclidean”. With this in mind, one may be
able to examine the properties of a manifold, what may be a potentially large
and complex space, by examining its behavior locally.

One way to do this is to represent our manifold that we are observing using a
topological triangulation. On an n-dimensional manifold, this triangulation,
written τ = τ0, τ1, ..., τn consists of lists of simplices σk, where the super-script
denotes the dimension of the simplex and τk is the list of all k -dimensional
simplices σk = i0, ..., ik [4]. We shall refer to 0-dimensional simplices as ver-
tices, 1-dimensional simplices as edges, 2-dimensional simplices as triangles
or faces, and 3-dimensional simplices as tetrahedra.

4

Name Vertices, V Edges, E Faces, F Genus, g χ
Tetrahedron 4 6 4 0 2
Octahedron 6 12 8 0 2
Icosahedron 12 30 20 0 2
Torus 9 27 18 1 0
Two-holed torus 10 36 24 2 -2

Table 1: Listings of vertices, edges, faces, and genus for some common shapes

For the purpose of this project, it will not be necessary to look at simplices
of higher dimension. However, concepts may translate to all dimensions.
Primarliy, we will be working with 2-dimensional manifolds, or surfaces, and
eventually we will address these problems in 3-dimensional manifolds. Ad-
ditionally, we are only concerned with manifolds that are closed, or without
boundary.

When talking about closed, triangulated surfaces an important characteristic
comes up that is known as the Euler characteristic, given by the equation
χ = V − E + F , where V is the number of vertices in the triangulation, E
is the number of edges, and F is the number of faces. This characteristic
is directly connected to another important property which is the genus of
a surface. The genus of a surface is a number that describes the toplogical
property that is more loosely known as the number of “holes” in the surface.
For instance, a sphere has a genus of 0 while a torus has a genus of 1, a
two-holed torus has genus 2, etc. The relationship between the two values is
given by χ = 2− 2g, where g is the genus of the surface.

Just as we can say that a whole triangulation is composed of 2-dimensional
simplices, we must make a definition for each individual simplex. For our
data structure, we decided on creating a list of references for each simplex to
give it definition within the triangulation. These lists of references for each
simplex are refences to other simplices in the triangulation with the property
of being local. We define the term “local” slightly different for each simplex.
To begin with, we say that an edge is defined by two vertices and a face is
defined by three vertices and three edges. Then, we can say that a vertex is
local to any edge that it is in the definition of and any face that it is in the
definition of, as well as any vertex that it shares an edge in common with. An
edge is local to any vertex that it is defined by and any face that it is in the

5

definition of, as well as any edge that it shares a vertex in common with. A
face is local to any vertex it is defined by, any edge that it is defined by, and
any face that it shares an edge in common with. These are the definitions
for locality of simplices that we decided upon, creating three different lists
for each simplex. From these definitions, we can come to certain conclusions
about the amount of local simplices a given simplex can have. A vertex
must have at least three local vertices, at least three local edges, and at least
three local faces. An edge must have exactly two local vertices and exactly
two local faces. A face must have exactly three local vertices, exactly three
local edges, and exactly threee local faces. Some of these definitions do not
hold true for one special case known as the double triangle, which will be
addressed later on in the paper, but in all other cases, these properties hold.

2.3 Circle packing

Given a triangulation, we wish to assign lengths to edges. This is known
as adding a metric to the triangulation. One way to do this is to create
a weighted triangulation. This is done by a technique called circle-packing.
Visually, circle-packing entails placing circles with their centers on a vertex
so that neighboring circles are tangent to each other. That is, they intersect
at only one point, as shown in Figure 2. The radius of the circle at a vertex,
vi, is known as its weight, ri. For any lone triangle, this can be done. By
applying weights to each vertex we provide lengths to the edges of our trian-
gulation as lij = ri + rj, where ri and rj are the radii of the circles centered
at vertices vi and vj, and lij is the edge with vertices vi and vj. The metric
applied to the triangulation in this way, with Euclidean triangles (see

∮
6.3),

is known as the cone metric [2].

Choosing to define the metric in this way, we guarantee the triangle inequality
and ensure that we are creating triangles. It is also needed to run the Ricci
flow, explained in

∮
3.2. But, there are restrictions to applying weights first.

Not all combinations of edge lengths are possible under this system. Some
triangles can simply not be circle-packed. The most common example is
shown in Figure 2, where there is no combination of weights at the vertices
that can make a proper circle-packing. By allowing generalizations of circle-
packings, as discussed in

∮
6.2, we can broaden our range of possible length

assignments.

6

Figure 2: An example of circle packing (left) and a triangulation that cannot
be circle-packed.

2.4 Duals

Every triangle has a circle that is internally tangent to all three edges. This
incircle is perpendicular to each circle centered at one of its vertices, and

has a radius r =

√
(s− a)(s− b)(s− c)

s
where s is the semi-perimeter of the

triangle, and a, b,and c are the side lengths. Let us rewrite this in terms of
the vertex weights, since we are using circle packing. Thus, a side length is
simply the sum of two vertex radii. We can then simplify this equation to

r =

√
rirjrk

ri + rj + rk

, with i, j and k being the vertices of the triangle. This can

be done on each triangle. All these incircles are mutually tangent to each
other, and any line connecting two adjacent incircles is perpendicular to the
common edge of the two triangles. We define the length of this dual edge ?e
as the sum of the radii of adjacent incircles. ?e = rin1 + rin2. Every edge has
a dual length. See Figure 3 for an illustration of a dual edge.

With the dual edges, we can obtain a polygon surrounding each vertex. The
area of the region formed by these duals is called the dual area, calculated
by

?Ai = ri

∑ ?ei

2
= ri

∑
rinscribed

where ri is the weight of the vertex. The sum is over all faces incident to
vertex i.

7

Figure 3: A dual to an edge

The dual length and dual area have some interesting properties that we hope
to investigate. David Glickenstein examines these and more in [4].

3 Ricci flow

3.1 Background

Introduced by Richard Hamilton in 1982, Ricci flow, named in honor of
Gregorio Ricci-Curbastro [6], has since had a large influence in the world of
geometry and topology. It is often described as a heat equation. Imagine a
room where a fireplace sits in one corner and a window is open on the other
side. The heat will diffuse through the room until the temperature is the same
everywhere. With Ricci flow, the same occurs with the curvature. Under
Ricci flow, a geometric object that is distorted and uneven will morph and
change as necessary so that all curvatures are even.The biggest consequence
of Ricci flow came when Grigori Perelman proved the Poincaré Conjecture in
2002. The Poincaré Conjecture, proposed in 1904, was particularly difficult
to prove, and was given the honor of one of seven millennium puzzles by
the Clay Mathematics Institute. It was Ricci flow that turned out to be
the cornerstone for the proof. In addition, its relation to the heat equation
may open new doors for work in fluid dynamics and even in the theory of
general relativity [6]. In 2002, Chow and Luo introduced the concept of
combinatorial Ricci flow. They showed that this new concept, performed on
a triangulation of a manifold, had many of the properties of the Ricci flow

8

Hamilton had defined. That the subject is still very new makes this research
project exciting.

3.2 Definition

Just because we have a triangulation and that it is circle packed does not
mean that it is in a desired configuration. Vertices can be too large or too
small, and the resulting geometry can be somewhat intractable. We would
like to have a way to determine the evolution of each shape to its final form,
which may be more uniform. In their paper, Chow and Luo introduce an
equation known as combinatorial Ricci flow. On a discrete surface, this equa-
tion allows the weights to change over time [2]. We introduce this equation
to the reader which can be written as

dri

dt
= −Kiri (1)

where Ki is a characteristic called the curvature of a vertex, and ri is the
radius or weight of the vertex i. We use the words “radius” and “weight”
interchangeably, denoting the length of the radius that surrounds a vertex i
in circle-packing. The value of Ki changes with time. Its value is found by
determining the angles of all triangles containing vertex i. Using side lengths
we can determine the angle using the law of cosines. For a triangle with
lengths a, b, and c, the angle opposite side c is

6 C = arccos(
a2 + b2 − c2

2ab
)

with similar formulas for the other angles. We take the sum of all angles
associated with a vertex i and define the curvature Ki as

Ki = 2π −
∑
6 i. (2)

Since we are performing multiple non-linear differential equations as vari-
ables depend on the weights which change over time, we can probably not
solve them explicitly.

A potential issue we noted is that, based on the equation, is it possible that
the radii could continually decrease. Take, for example, a simple tetrahedron
with all sides of equal length. We find that the curvature of each vertex
always equals π. Thus in solving the differential equation computationally

9

we would decrease each vertex by the same amount, but the curvature of
each vertex would still remain π because the curvature is not affected by
uniform scaling. The radii would continue to decrease until they approach
zero length. We have to address that issue since computers don’t like working
with numbers near zero, as in the denominator of the arccosine function.
Numerical instability may occur. To avoid this issue, let us resize the length
of each radius by a scalar, α. We denote each scaled length by r̃i and equate
as

r̃i = αri. (3)

Each r̃i would have its own K̃i, but since we are scaling all sides by the same
factor, this does not effect the curvature of the surface, so K̃i = Ki. Thus in
plugging r̃i in to the differential equation we get

dr̃i

dt
=

d(αri)

dt
= α

dri

dt
+ ri

dα

dt

= −αKiri +
r̃i

α

dα

dt

= −K̃ir̃i +
r̃i

α

dα

dt
. (4)

We also note that
1

α

dα

dt
=
d(logα)

dt
using a basic chain rule. In order to find

an appropriate value for α we decided to use the following criterium:

f(r̃1, r̃2, . . . , r̃n) =
∏
r̃i =

∏
αri = C, a constant. (5)

We will call this value the product area of the surface. This area prevents all
radii from decreasing to zero at the same time. By taking the derivative of
Eq. (5) with respect to time we find that

d(log α)

dt
=

sum of all curvatures

number of vertices
= K, average curvature. (6)

In this paper, we may refer to the sum of all curvatures as the total curvature.
We can also show that K is a constant and depends on the number of vertices
and the Euler characteristic. We know that the sum of angles from each
vertex is 360 deg, or 2π. However, we also know that the sum of angles on
each face is π, thus we determine that

10

∑
Ki = 2πV − πF = 2π(V − F

2
)

We can simplify this by noting trends in basic triangulations. As every face
is made up of three edges, and each edge belongs to two faces, we can see
that 3F = 2E, or E = 3F

2
. Looking back at Table 1 we note this true for all

polyhedra listed. Let us use this substitution and rewrite the above equation
as

∑
Ki = 2π(V − F

2
) = 2π(V − 3F

2
+ F) = 2π(V − E + F) = 2πχ.

Thus we find that K is just

∑
Ki

|V |
=

2πχ

|V |
where |V | is the number of vertices.

This is also noted in [2]. Plugging this information back into Eq. (4) we
determine that

dr̃i

dt
= −K̃ir̃i +Kr̃i = (K − K̃i)r̃i (7)

However, since everything is now a function of r̃i and not α, we can just as
easily plug ri back in to the differential equation instead of r̃i, so we end up
with:

dri

dt
= (K −Ki)ri (8)

This is known as normalized Ricci flow, as discussed in [2]. In the case of our
basic tetrahedron from earlier, the radii would not change after each iteration

as K = Ki = π and thus
dri

dt
= 0 for i = {1, 2, 3, 4}.

3.3 Expectations

We have some expectations for combinatorial Ricci flow over two-dimensional
Euclidean surfaces. Cases like the boundary of the tetrahedron can be cal-
culated by hand so it will be useful to test our results against these surfaces.
For example, we expect that the tetrahedron under (1) will have all weights
converge to zero. Whereas under (8) the weights are expected to converge
to positive constants.

11

There are other expected behaviors. We expect that the product of the ini-
tial weights will be equal to the product of the weights at any intermediate
step of the flow, what we call the product area. Also, it is predicted that the
total curvature of a 2-manifold surface should remain a constant determined
by its genus.

For the program we expect to create a system that allows for easy access of
information while also providing that information in a time efficient way. Our
goal is to create a program that can be built upon later to provide further
functionality and options without requiring widespread and time consuming
changes to the code. While we certainly expect a number of bugs, we plan
to develop methods to test and find any errors in our code.

Initial checks for accuracy:

1. Boundary of tetrahedron will converge to equal weights.

2. Constant product area.

3. Constant total curvature.

4 Program/Code

4.1 Structure

When creating the program, the data structure design was critical. The de-
sign not only helps dictate the direction of the project over the course of its
lifespan, but the decisions affect the speed and efficiency of all added func-
tionality. It was agreed that the system would have to hold the different
simplices and that they would be referencing each other. This part of the
program would need to be structured in a way that makes it quick and easy
to move from one simplex to another. As seen in Figure 4, all simplices
are assumed to have lists of references to other simplices, what we call local
simplices, broken down by dimension. For the two-dimensional case, each
simplex has lists of local vertices, local edges, and local faces..

The lists are vectors of integers. The vector, provided in the C++ library,
was chosen so that the list can dynamically change in size. The integers are

12

Figure 4: A UML diagram of the program. The UML shows how the various
files interact as well as the functions and variables they hold.

a decision based on both speed and size. Instead of, for example, a vertex
having a list of actual edges (AB,CF , etc.) or pointers to edges, the vertex
has a list of integers representing the edges. The actual edges are then ob-
tained through the Triangulation class, which holds maps from integers to
simplices. The Triangulation class is made up of static functions and maps
and is designed so only one triangulation exists at any time. Because the
maps are static, they can be accessed at any time from anywhere in the code
without the need to pass pointers through function calls. Vertices also hold
a weight, representing the radius from a circle packing on the triangulation.
Edges then have a length based on the weights of its two vertices. When a
vertex’s weight is changed, the local edges to that vertex update their lengths
automatically.

13

Vertex: 1 Edge: 1 Face: 1
2 3 4 1 2 1 2 3
1 2 4 2 3 4 5 7 1 2 3
1 2 3 1 2 2 3 4
Vertex: 2 Edge: 2 Face: 2
1 3 4 5 1 3 1 2 4
1 3 5 7 1 3 4 6 8 1 4 5
1 2 4 5 1 3 1 3 5
...

...
...

Vertex: 5 Edge: 9 Face: 6
2 3 4 4 5 3 4 5
7 8 9 4 5 6 7 8 6 8 9
4 5 6 5 6 3 4 5

Table 2: Conversion of format from [5] to ours.

While we are able to manually construct a few basic triangulations by hand,
as we add more vertices doing so will become harder. Frank Lutz, creator of
The Manifold Page [5], has a little under two million known triangulations
of varying sizes. However, the format is different than our setup, so we
developed an algorithm to take a given triangulation, saved on its own as a
text file, and convert it into the form that we use. We were able to transform
this

{manifold_lex_d2_n5_o1_g0_#1=[[1,2,3],[1,2,4],[1,3,4],

[2,3,5],[2,4,5],[3,4,5]]}

which solely documents the faces, into our format, which can be seen in
Table 2.

4.2 calcFlow

The function calcF low runs a combinatorial Ricci flow on a triangulation
and records the data in a file. The algorithm for solving the ODE, provided
by J-P Moreau, employs a Runge-Kutta method of order 4 [7]. First, the
file name for the data is provided. Then, a dt is given by the user that

14

Step 1 Weight Curv
Vertex 1: 6.000 0.7442
Vertex 2: 3.000 -1.122
Vertex 3: 3.000 -1.373
Vertex 4: 8.000 1.813
Vertex 5: 6.000 1.227
Vertex 6: 2.000 -3.046
Vertex 7: 4.000 -0.3045
Vertex 8: 8.000 1.989
Vertex 9: 5.000 0.07239

Step 50 Weight Curv
Vertex 1: 4.557 0.008509
Vertex 2: 4.530 -0.01185
Vertex 3: 4.534 -0.009091
Vertex 4: 4.563 0.01268
Vertex 5: 4.550 0.002772
Vertex 6: 4.527 -0.01455
Vertex 7: 4.541 -0.003563
Vertex 8: 4.559 0.01018
Vertex 9: 4.553 0.004906

Table 3: Two steps of a Ricci flow

represents the time step for the system. The next parameter is a pointer to
an array of initial weights to use. This is followed by the number of steps
to calculate and record. Lastly, a boolean is provided, where true indicates
that the normalized differential equation, (8), should be used. Otherwise,
the standard equation (1) is employed. Each step, with every vertex’s weight
and curvature at that step, is printed to the file. An example is shown in
Table 3.

After the initial design of calcF low, tests were run to determine its speed.
The time it took to run was directly proportional to the number of steps
in the flow. However, it was also proportional to more than the square of
the number of vertices of the triangulation. As a result, while a four-vertex
triangulation can run a 1000 step flow in three seconds, it would take a
twelve-vertex triangulation 43 seconds to run the same flow. After inspecting
the speed of the non-adjusted flow in comparison, it became clear that the
calculation of total curvature, which remains constant in two-dimensional
manifold cases, was being calculated far too often. After being adjusted so
that it is calculated just once per step, the speed of the flow is much faster so
that a four-vertex system with 1000 steps takes just one second and twelve
vertices is much improved with a time of only four seconds. The code for the
calcF low function can be found in

∮
8.4.

15

4.3 Morphs

Another part of the code is a file strictly made up of functions used to
manipulate and alter the triangulations being run. These functions, known
within the code as morphs, allow us to change the triangulation in different
ways, geometric as well as topological, in order to provide us with different
kinds of discrete manifolds over which to run our flow.

4.3.1 Flips

One type of morph that we have available is known as a flip, called this
because the transformation appears equivalent to the change in the planar
projection of a tetrahedron when it is flipped over completely. Known also as
bistellar moves, these transformations can be used to change the degree of a
particular vertex or many vertices, or coarsen or refine an entire triangulation
as a whole. In higher dimensions, there are many different moves of this kind,
but in two dimensions, we have only three types.

• 1-3 flip
In a 1-3 flip, a single face is replaced by three faces. One way to think
of going about this procedure is to simply add a new vertex to an
existing face. This requires creating three new edges that connect the
new vertex to the three vertices of the existing face.

• 2-2 flip
In this flip, we take a pair of adjacent faces and readjust the edge that
they share to connect the opposite pair of vertices, as shown in figure 5.
This move creates no new simplices and removes no existing vertices.
The code for the 2-2 flip is located in

∮
8.4.

• 3-1 flip
In what is essentially the inverse of the 1-3 flip, the 3-1 flip is one where
we take a vertex that is connected to three other vertices and remove it
entirely. This move is more restrictive than the others since not every
vertex is connected to exactly three vertices.

Flips have the special property that they do not change the Euler character-
istic of the surface they are performed upon. For example, in performing a
1-3 flip, we have a total of 3 new edges, 2 more faces, and 1 new vertex. The
value of χ does not change as (V +1)−(E+3)+(F+2) = V −E+F = χ. This

16

Figure 5: An example of a 2-2 flip.

means we could do any number of these flips without changing the topology
of the surface.

Another thing of note is that any flip we could think of (2-5 flip, 1-4 flip)
could be made using a combination of 1-3, 2-2, and 3-1 flips. Thus these
three seem to generate all possible configurations.

4.3.2 Other Transfigurations

In addition to the flips that were described above, there are other “morphs”
that can be performed to change the topology of a triangulation in order to
give us some more diverse and interesting shapes over which to run these flows
and observe their results. There are two such moves that we can perform.

• Adding Handles
By adding a handle to a surface, we are in essence adding a hole to it.
One simple way to obtain this result is to “patch” the surface of a torus
to the surface that we are working with. This is exactly what we have
done. The method removes a face from the existing triangulation and
replaces it with a 9-vertex triangulation of a torus. By using the three
existing vertices and edges, we are actually adding 6 new vertices, 24
new edges, and 17 new faces. This operation changes the topology of
the triangulation that we are working with. It will reduce the Euler
characteristic, χ, by 2 and thus change the total curvature of the figure.

• Adding Cross-Caps
A cross-cap is a piece of a surface with a self intersection. The purpose

17

of adding a cross-cap to a manifold is to give us a property of non-
orientability. A surface of this kind is characterized by the ability to
move an object along it in such a way that it reaches its original location
but in mirror-image form. In this way, the portion of the surface known
as the cross-cap is, itself, topologically equivalent to the mobius band.
It is sufficient to add only a single cross-cap to any given surface,. In
conjunction with the method of adding handles, this technique allows
us to create any topology in two dimensions.

• Adding Double Triangles
Another shape we have been looking into is called the double trian-
gle. A double triangle is made of two triangles with the same three
vertices. It can also be thought of as folding one triangle on top of
another. We can add these to a triangulation and see how things vary
with their presence. This is of interest because of their very peculiar
effect on the definition of a triangulation. Without double triangles,
there are certain restrictions on definitions and adjacency properties of
simplices within a triangulation as outlined in the previous section on
triangulations. However, with these double triangles, the restrictions
are broken up by allowing double and even triple adjacency references,
creating vertices with only one or two local vertices, faces with only
two defining edges, and edges with only one defining vertex, among
other bizarre properties. Because of these inconsistencies in definition,
different surfaces that have these double triangles attached to them
will behave in noteworthy ways. The function that adds these shapes
takes an edge as an argument and adds another edge with the same two
vertices. Then, a vertex is added and two edges are drawn from this
vertex to the other two vertices mentioned. Two new faces are formed
by these two new edges as well as the other two edges mentioned, one
for each face. The process can be imagined as flattening a party hat
and attaching it to an object along the open end.

5 Results

5.1 Flows

The program for the Ricci flow was tested by beginning with the simplest
cases, and then explored with as many different possibilities as we could con-

18

ceive of to try to find anomalies. The first test was the boundary of the
tetrahedron. In the standard equation, it is easily shown that all weights ap-
proach zero exponentially fast. In the normalized equation, and the equation
that is used in the rest of the testing, the tetrahedron’s weights approach a
single positive number, the fourth root of the product area of the tetrahedron,
so that the area remains constant. In addition, all the curvatures converged
to the same value, in this case π, so that the total curvature is 4π. Results
were similar for the other platonic solids.

The next test was the torus with the standard nine-vertex triangulation.
Again all the weights approached the same positive number to maintain con-
stant area. As expected, the curvatures all went to zero while the total
curvature remained zero throughout. Further simple tests included trian-
gulations of larger genus, and in all cases the total curvature remained at
a constant multiple of π that was expected and the product area was also
constant. In addition, there does not appear to be any further effect from
the initial weights other than determining the area of the triangulation. It
is not clear from any of the tests we ran that having extremes amongst the
initial weights causes a different end result.

In each case all vertices converged to the same curvature. This was not al-
ways the situation for the weights, as in many triangulations there would be
several final weights. It became clear that this would occur when vertices
had different degrees. In fact, we guess that there is a formula relating the
product area of a weighted triangulation and the degree of a vertex to that
vertex’s final weight. In most of the examples we tried, when two vertices
had the same degree, they had the same final weight, but this is not always
the case. One such example is adding three vertices to one face of the tetra-
hedron. As seen in Table 4, vertices 4, 5, and 6 all have degree four. Yet
vertex 5 has a greater final weight than the other two. The only explanation
we could find with some merit is that the local vertices of 5 are different in
degree from those of 4 and 6. That is, the degrees of the local vertices of 5 are
never less than four, while vertices 4 and 6 each have a local vertex with de-
gree 3. See Figure 10 in the Appendix for an illustration of weights over time.

19

Vertex: 1 Vertex: 5
2 3 4 5 6 7 1 2 4 6
1 2 3 7 10 13 7 8 9 12
1 2 3 5 7 9 5 6 7 8
Vertex: 2 Vertex: 6
1 3 4 5 6 7 1 2 5 7
1 4 5 8 11 14 10 11 12 15
1 2 4 6 8 10 7 8 9 10
Vertex: 3 Vertex: 7
1 2 4 1 2 6
2 5 6 13 14 15
2 3 4 1 9 10
Vertex: 4 Edge: 1
1 2 3 5 :
3 4 6 9 :
3 4 5 6

Final weights for a random
initial weighted Triangulation
Vertex 1: 15.692
Vertex 2: 15.692
Vertex 3: 6.18421
Vertex 4: 9.6524
Vertex 5: 10.6409
Vertex 6: 9.6524
Vertex 7: 6.18421

Table 4: Adding three vertices to a Tetrahedron

5.2 Specific cases

Example: Adding a vertex to a one-holed torus. See figure 6.

By inserting a vertex within a triangulation for a torus, we are essentially
creating a bump on the torus and then observing what happens as we run it
through out calcF low program. We discovered that the new vertex shrinks
in size to a weight much smaller than the other vertices, but to a positive con-
stant. To counter this, the other vertices grow slightly to maintain Eq. (5).
The weight that the new vertex converges to turned out to be in proportion
to the other weights by 3 + 2

√
3, the exact proportion necessary to maintain

equality amongst all other weights. An oddity here is that the three vertices
local to this added vertex converged to the same weight as all the vertices
not near the flip, despite a difference in degree.

Example: Adding a leaf to a two-holed torus.

When we added a double triangle to the edge of a two-holed torus, we ex-
perienced for the first time what is known as a singularity. At the special

20

Figure 6: A triangulation of the torus, and the addition of a new vertex.
This is a 1-3 flip.

vertex that was only of degree two, its weight continued to shrink and never
converged. Eventually, enough steps of the Ricci flow were performed that
the size of the weight became less than what the computer could differentiate
from 0 and the program crashed with a division-by-zero error. Before the
crash, the other vertices were increasing without convergence to counteract
the decreasing weight. The reason is that all vertices wanted to attain the
same curvature, in this case −2

5
π. Yet the new vertex, with only two angles

in its sum, can only obtain a curvature of 0 (each angle ∼ π radians). The
result is that the weight shrinks in an attempt to attain angles greater than
π, which is simply not possible. What is still not clear is whether or not the
weight reaches 0 in finite time, or simply approaches 0. This is difficult to
test with a computer only capable of approximating the weight, though we
expect that it does so in finite time.

Example: Performing a 2-2 flip on a 12-vertex torus.

One interesting observation we made was that flips can drastically change
the behavior of some triangulations. For Example, in a 12-vertex torus, per-
forming a flip on one edge affected created a double triangle. Similarly to
the previous case, all curvatures are converging to 0, but the vertex with
degree 2 simply cannot accomplish this. However, unlike the previous case,
we suspect that the weight does not become 0 in finite time, but instead

21

approaches 0.

Example: Triangulation of genus 4.

While the previous two cases were quite interesting, there is some hesitation
given that we were using double triangles and being less restrictive in what
were allowable triangulations. But the theory behind why both situations
reacted as they did left hope for a case that fit in a stricter setting. In the
same sense that a two degree vertex could have a curvature no less than 0, a
three degree vertex is bounded below by −π. It was observed that the ver-

tices of a triangulation all converge to
2πχ

|V |
curvature. Now it was a matter

of finding a triangulation with a large enough genus and few vertices. The
first we found, provided by [5], was an 11 vertex triangulation with genus
4. To create a vertex with degree 3, we chose to add a new vertex to a face
with a 1-3 flip. This made all curvatures try to converge to −π. We then
expected that the new vertex would react as in the previous example. This
was in fact the case, and it presents the question of whether or not there
is a limit on the degree that can create such a singularity. The issue being
that for higher genus, more vertices are required. Unfortunately, [5] does not
provide large enough triangulations for fourth degree vertices. A data plot
of this situation with a genus 6 triangulation is provided in

∮
8.3.

Example: Two tetrahedra connected at a vertex. See Figure 7

It turns out χ = 7 Vertices - 12 Edges + 8 Faces = 3, which is not a case
we had seen before. In previous cases χ was an even integer. Starting each
vertex with equal weight, we obtained an unexpected result. The center
weight becomes very large, and the others become smaller in comparison.
We concluded that since the central vertex has a much higher degree, its
weight becomes large, creating elongated tetrahedra on either side, in order
to have the same curvature as all other vertices. One good thing we noted
was that the total curvature equaled 6π = 2πχ. Technically, this example
contradicts our notion of a manifold, but we felt it useful in validating our
program procedure.

22

Figure 7: Two tetrahedra conjoined at a vertex.

5.3 Convergence speeds

One experiment we performed was measuring convergence speeds of various
triangulations. For each triangulation, five flows were run where the weights
were random between one and twenty-five. Random weights, while not a per-
fect solution, was the most effective option and easiest to implement. It was
unclear what set weights could have an equal effect for different triangula-
tions. By performing five trials and using random weights, we hope to negate
any effect the weights could have on the convergence speed of a triangulation.
The dt was held constant at 0.03 so that the number of steps needed to run
was not large and time consumming and still provided accurate results. For
each run, a step number was assigned for when all weights and curvatures
had converged to four digits, (the precision shown in a file of the results).

Beginning with the basic case, the tetrahedron took on average 156.8 steps
to converge to four digits and remained fairly consistent through all five tri-
als. Strangely, the octahedron converged faster on all five flows, averaging
138.4 steps. This was made all the stranger by the fact that the icosahedron
averaged 198.8 steps. The torus revealed several things about convergences.
First, the standard nine vertex torus averaged only 110 steps, suggesting

23

Figure 8: Summary of convergence data for varying criteria
24

that a torus converges faster than a sphere. When a vertex was added to the
torus, it greatly decreased the convergence speed, to 248.8 steps. Compared
to the Tetrahedron with an added vertex, 164.2, this was a very large jump.
When another vertex was added to the same face as the first, the convergence
speed dropped yet again, to an average of 437.6 steps. Yet when this vertex
was added to a face not connected to the first, the convergence speed was
almost steady at 264.8. And adding a third in the same style caused little
increase.

This seems to suggest that convergence speed is dependent on the number
of unique vertices. By unique we mean the properties of the vertex (number
of local vertices, the weight it converges to, etc.). When the vertices were
added to separate faces, there remained only three unique vertices. Whereas,
adding the two vertices to the same face created five unique vertices. This
theory is further supported by a twelve vertex sphere designed so that all
vertices are unique. The average convergence was 460 steps, more than twice
as long as the icosahedron, which also is a twelve vertex sphere.

As a final note, the deviation of the initial weights did not have a clear impact
on the convergence speed. At some times, it would appear that initial weights
with a higher deviation would converge faster, yet at other times it was lower
deviation that seemed to lead to faster convergence.

6 Future work

6.1 3-D

We would also like to start investigating 3-dimensional constructs built from
tetrahedrons. We can adjust our current code as much as we need to, and ul-
timately be able to evaluate Yamabe flow, as discussed by [3]. While Yamabe
flow is similar to Ricci flow, its value of Ki is determined quite differently,
involving not only the angles of the faces, but also the cone angles associated
with tetrahedron vertices.

Ultimately, Dr. Glickenstein would like to be able to build 3-D representa-
tions of these surfaces and walk along them in any given path. We can look
into how faces are connected to each other, and be able to move from one

25

Figure 9: An example of relaxing circle packing and introducing Φ.

triangle to another seamlessly. We can lay groundwork for that, and when
this project is able to jump to 3-D modeling, we hope that this will help.

6.2 Circle packing expansions

Circle packing is a very special way to characterize our side lengths. If we
relax this criteria and let the circles overlap, we can introduce a second weight
Φ that is representative of their angle of intersection. See Figure 9. We can
then evaluate our side lengths as

lij =
√
r2
i + r2

j + 2rirj cos(Φ(eij))

With this more general interpretation, we can examine questions asked by
Chow and Luo in [2].

6.3 Hyperbolic/ spherical triangulations

Hence far, we have focused on Euclidean triangles. However, there are cases
when triangulations may be better suited in other systems. In changing our
format to hyperbolic and spherical coordinates, we would have to reevaluate
each of our steps depending on the system. For example, in hyperbolic, the

26

basic Ricci flow equation is
dri

dt
= −Ki sinh ri. Note that in, for instance,

spherical geometry, for a surface X,
∑

Ki = 2πχ − S(X), with S(X) being
the surface area of X, which can change over time.

It is also of interest to run variations of our calcF low program based on
our different geometries. We can observe whether or not each triangulation
converges in the same fashion, or if it matters which geometry we choose.
If we do discover that all systems behave the same way, we would then like
to focus on one geometry, most likely Euclidean, as that would be easier to
grasp and be more computational.

7 Conclusion

We had a lot of goals for this project. For one, we are the first group to work
with Dr. David Glickenstein and he has his own long-term goals. As the
initial builders for these goals, we feel that we have laid a good foundation
that can be easily built upon by future undergraduate students. We are
excited to see where Dr. Glickenstein’s project is headed and we hope to
remain a part of it in the months and years to come. Another goal was to
properly implement Ricci flow for 2-dimensional manifolds. While there are
a number of extensions that still need to be implemented, we are pleased
that the flow is functional and providing useful data. We also feel we have
learned an enormous amount over the course of only a few weeks. At the
beginning, we all had varying familiarities with college geometry; some of us
had not had a course in geometry since high school. Lastly, the experience
from writing a research report, a task none of us have done before, will
undoubtedly help us in our future endeavors. We would like to thank Dr.
David Glickenstein for having us on this project, Dr. Robert Indik and the
University of Arizona Math Department for their help and support, and the
National Science Foundation VIGRE # .

27

References

[1] M. Brown. Ordinary Differential Equations and Their Applications.
Springer-Verlag, New York, NY, 1983.

[2] B. Chow and F. Luo. Combinatorial Ricci Flows on Surfaces. Journal of
Differential Geometry 63, Volume , 97-129, 2003.

[3] D. Glickenstein. A combnatorial Yamabe flow in three dimensions. Topol-
ogy 44, 791-808, 2005.

[4] D. Glickenstein. Geometric triangulations and discrete laplacians on man-
ifolds. Material given to us by David, 2008.

[5] F. H. Lutz. The manifold page. http://www.math.tu-
berlin.de/diskregeom/stellar/.

[6] Dana Mackenzie. The Poincaré conjecture proved.
http://www.sciencemag.org.

[7] J-P Moreau. Differential equations in c++. http://pagesperso-orange.fr/
jean-pierre.moreau/c eqdiff.html.

28

8 Appendix

8.1 Derivation of Eq. (6)

We used the criteria

f(r̃1, r̃2, . . . , r̃n) =
∏
r̃i =

∏
αri = αn

∏
ri = C

to constrain the values of radii. We take the derivative of f with respect to
t and obtain

df

dt
= nαn−1dα

dt
r1r2 . . . rn + αndr1

dt
r2r3 . . . rn

+ αnr1
dr2
dt
r3r4 . . . rn + . . .+ αnr1r2 . . . rn−1

drn

dt
.

But since
dri

dt
= −Kiri from Eq. 1 we obtain

df

dt
=

nαn

α

dα

dt
r1r2 . . . rn −K1α

nr1r2r3 . . . rn

− K2α
nr1r2r3r4 . . . rn − . . .−Knα

nr1r2 . . . rn−1rn

from which we can group terms and obtain

df

dt
= (αnr1r2 . . . rn)(

n

α

dα

dt
−K1 −K2 − . . .−Kn)

= C(
n

α

dα

dt
−K1 −K2 − . . .−Kn).

If we assume the product is a constant, we have
df

dt
= 0. Thus we have

n

α

dα

dt
−K1 −K2 − . . .−Kn = 0.

Rearranging we have

1

α

dα

dt
=
d(logα)

dt
=
K1 +K2 + . . .+Kn

n
= K

which we refer to as Eq. (6)

29

8.2 Remarks on Runge-Kutta method for solving Eq. (8)

The method used by Moreau in [7] to solve a differential equation involves
using a Runge-Kutta method. Prior to adapting the code from Moreau’s
website, we reached the conclusion that a Runge-Kutta format would be
most beneficial for this type of differential equation problem. Even though it
is more computationally complex than the simpler Euler’s method, it makes
up in its ability to converge and in its accuracy. According to [1] the error
associated with using Runge-Kutta is on the order of h4, whereas with a
standard Euler approximation the error is simply of order h, with h = dt
being our step incremental.

Based on our evaluations of radii and curvatures over time, it appears to
converge exponentially for each vertex. However, as mentioned previously,
performing flips on a triangulation may create unusual behavior.

8.3 Data Plots

Figure 10: An example of how morphs can change the asymptotic behavior
of vertices. In this case we saw the weights of some vertices change concavity.

30

Figure 11: An example of curvatures over time. While they do converge to
the same curvature, the vertex with the maximum or minimum curvature
may change. This is a separate trial than that producing Fig. 10

31

Figure 12: An example of adding a vertex to a genus 6 surface. One of
the curvatures in unable to drop below −π, and as a result, its weight is
pushed to almost zero. Other vertices group together to compensate for this
behavior.

32

8.4 Code Examples

• calcFlow

void calcFlow(char* fileName, double dt ,double *initWeights,

int numSteps, bool adjF)

{

int p = Triangulation::vertexTable.size(); // The number of vertices.

double ta[p],tb[p],tc[p],td[p],z[p]; // Temporary arrays to hold data in.

int i,k; // ints used for "for loops".

map<int, Vertex>::iterator vit;

map<int, Vertex>::iterator vBegin = Triangulation::vertexTable.begin();

map<int, Vertex>::iterator vEnd = Triangulation::vertexTable.end();

double weights[p][numSteps];

double curvatures[p][numSteps];

ofstream results(fileName, ios_base::trunc);

results.setf(ios_base::showpoint);

double net = 0; // Net and prev hold the current and previous

double prev; // net curvatures, repsectively.

for (k=0; k<p; k++)

z[k]=initWeights[k]; // z[k] holds the current weights.

for (i=1; i<numSteps+1; i++)

{

prev = net; // Set prev to net.

net = 0; // Reset net.

for (k=0, vit = vBegin; k<p && vit != vEnd; k++, vit++)

// Set the weights of the Triangulation.

vit->second.setWeight(z[k]);

if(i == 1) // If first time through, use static method.

prev = Triangulation::netCurvature();

for (k=0, vit = vBegin; k<p && vit != vEnd; k++, vit++)

// First "for loop" in whole step calculates

{ // everything manually, prints to file.

weights[k][i - 1] = z[k];

double curv = curvature(vit->second);

curvatures[k][i - 1] = curv;

net += curv;

33

if(adjF) ta[k]= dt * ((-1) * curv

* vit->second.getWeight() +

prev / p

* vit->second.getWeight());

else ta[k] = dt * (-1) * curv

* vit->second.getWeight();

}

for (k=0, vit = vBegin; k<p && vit != vEnd; k++, vit++)

// Set the new weights.

vit->second.setWeight(z[k]+ta[k]/2);

for (k=0, vit = vBegin; k<p && vit != vEnd; k++, vit++)

{

if(adjF) tb[k]=dt*adjDiffEQ(vit->first, net);

else tb[k]=dt*stdDiffEQ(vit->first);

}

for (k=0, vit = vBegin; k<p && vit != vEnd; k++, vit++)

// Set the new weights.

vit->second.setWeight(z[k]+tb[k]/2);

for (k=0, vit = vBegin; k<p && vit != vEnd; k++, vit++)

{

if(adjF) tc[k]=dt*adjDiffEQ(vit->first, net);

else tc[k]=dt*stdDiffEQ(vit->first);

}

for (k=0, vit = vBegin; k<p && vit != vEnd; k++, vit++)

// Set the new weights.

vit->second.setWeight(z[k]+tc[k]);

for (k=0, vit = vBegin; k<p && vit != vEnd; k++, vit++)

{

if(adjF) td[k]=dt*adjDiffEQ(vit->first, net);

else td[k]=dt*stdDiffEQ(vit->first);

}

for (k=0; k<p; k++) // Adjust z[k] according to algorithm.

z[k]=z[k]+(ta[k]+2*tb[k]+2*tc[k]+td[k])/6;

}

for(k=0, vit = vBegin; k<p && vit != vEnd; k++, vit++)

{ //Print results

results << setprecision(6);

results << left << "Vertex: " << left << setw(4)<< vit->first;

34

results << right << setw(3) << "Weight";

results << right << setw(10) << "Curv";

results << "\n------------------------------\n";

for(int j = 0; j < numSteps; j++)

{

results << left << "Step " << setw(7) << (j + 1);

results << left << setw(12) << weights[k][j];

results << left << setw(12) << curvatures[k][j] << "\n";

}

results << "\n";

}

results.close();

}

• 2-2 Flip

void flip(Edge e)

{

//start out by naming every object that is local to the flip

Face f1 = Triangulation::faceTable[(*(e.getLocalFaces()))[0]];

Face f2 = Triangulation::faceTable[(*(e.getLocalFaces()))[1]];

vector<int> sameAs;

vector<int> diff;

Vertex va1 = Triangulation::vertexTable[(*(e.getLocalVertices()))[0]];

Vertex va2 = Triangulation::vertexTable[(*(e.getLocalVertices()))[1]];

diff = listDifference(f1.getLocalVertices(), f2.getLocalVertices());

if(diff.size() == 0)

throw string("Invalid move, operation canceled");

Vertex vb1 = Triangulation::vertexTable[diff[0]];

diff = listDifference(f2.getLocalVertices(), f1.getLocalVertices());

Vertex vb2 = Triangulation::vertexTable[diff[0]];

sameAs = listIntersection(va1.getLocalEdges(), vb1.getLocalEdges());

Edge ea1 = Triangulation::edgeTable[sameAs[0]];

sameAs = listIntersection(va2.getLocalEdges(), vb1.getLocalEdges());

35

Edge eb1 = Triangulation::edgeTable[sameAs[0]];

sameAs = listIntersection(va1.getLocalEdges(), vb2.getLocalEdges());

Edge ea2 = Triangulation::edgeTable[sameAs[0]];

sameAs = listIntersection(va2.getLocalEdges(), vb2.getLocalEdges());

Edge eb2 = Triangulation::edgeTable[sameAs[0]];

sameAs = listIntersection(f1.getLocalFaces(), ea1.getLocalFaces());

Face fa1 = Triangulation::faceTable[sameAs[0]];

sameAs = listIntersection(f1.getLocalFaces(), eb1.getLocalFaces());

Face fb1 = Triangulation::faceTable[sameAs[0]];

sameAs = listIntersection(f2.getLocalFaces(), ea2.getLocalFaces());

Face fa2 = Triangulation::faceTable[sameAs[0]];

sameAs = listIntersection(f2.getLocalFaces(), eb2.getLocalFaces());

Face fb2 = Triangulation::faceTable[sameAs[0]];

//removals

Triangulation::vertexTable[(va1.getIndex())].removeVertex(va2.getIndex());

Triangulation::vertexTable[(va2.getIndex())].removeVertex(va1.getIndex());

Triangulation::vertexTable[(va1.getIndex())].removeEdge(e.getIndex());

Triangulation::vertexTable[(va2.getIndex())].removeEdge(e.getIndex());

Triangulation::vertexTable[(va1.getIndex())].removeFace(f2.getIndex());

Triangulation::vertexTable[(va2.getIndex())].removeFace(f1.getIndex());

Triangulation::edgeTable[(e.getIndex())].removeVertex(va1.getIndex());

Triangulation::edgeTable[(e.getIndex())].removeVertex(va2.getIndex());

for(int i = 0; i < e.getLocalEdges()->size(); i++)

{

Triangulation::edgeTable[(e.getIndex())]

.removeEdge((*(e.getLocalEdges()))[i]);

}

for(int i = 0; i < va1.getLocalEdges()->size(); i ++)

{

Triangulation::edgeTable[(*(va1.getLocalEdges()))[i]]

.removeEdge(e.getIndex());

}

for(int i = 0; i < va2.getLocalEdges()->size(); i ++)

{

Triangulation::edgeTable[(*(va2.getLocalEdges()))[i]]

.removeEdge(e.getIndex());

36

}

Triangulation::edgeTable[(eb1.getIndex())].removeFace(f1.getIndex());

Triangulation::edgeTable[(ea2.getIndex())].removeFace(f2.getIndex());

Triangulation::faceTable[(f1.getIndex())].removeVertex(va2.getIndex());

Triangulation::faceTable[(f2.getIndex())].removeVertex(va1.getIndex());

Triangulation::faceTable[(f1.getIndex())].removeEdge(eb1.getIndex());

Triangulation::faceTable[(f2.getIndex())].removeEdge(ea2.getIndex());

Triangulation::faceTable[(f1.getIndex())].removeFace(fb1.getIndex());

Triangulation::faceTable[(fb1.getIndex())].removeFace(f1.getIndex());

Triangulation::faceTable[(f2.getIndex())].removeFace(fa2.getIndex());

Triangulation::faceTable[(fa2.getIndex())].removeFace(f2.getIndex());

//additions

Triangulation::vertexTable[(vb1.getIndex())].addVertex(vb2.getIndex());

Triangulation::vertexTable[(vb2.getIndex())].addVertex(vb1.getIndex());

Triangulation::vertexTable[(vb1.getIndex())].addEdge(e.getIndex());

Triangulation::vertexTable[(vb2.getIndex())].addEdge(e.getIndex());

Triangulation::vertexTable[(vb1.getIndex())].addFace(f2.getIndex());

Triangulation::vertexTable[(vb2.getIndex())].addFace(f1.getIndex());

Triangulation::edgeTable[(e.getIndex())].addVertex(vb1.getIndex());

Triangulation::edgeTable[(e.getIndex())].addVertex(vb2.getIndex());

for(int i = 0; i < vb1.getLocalEdges()->size(); i ++)

{

Triangulation::edgeTable[(e.getIndex())]

.addEdge((*(vb1.getLocalEdges()))[i]);

Triangulation::edgeTable[(*(vb1.getLocalEdges()))[i]]

.addEdge(e.getIndex());

}

for(int i = 0; i < vb2.getLocalEdges()->size(); i ++)

{

Triangulation::edgeTable[(e.getIndex())]

.addEdge((*(vb2.getLocalEdges()))[i]);

Triangulation::edgeTable[(*(vb2.getLocalEdges()))[i]]

.addEdge(e.getIndex());

}

Triangulation::edgeTable[(ea2.getIndex())].addFace(f1.getIndex());

37

Triangulation::edgeTable[(eb1.getIndex())].addFace(f2.getIndex());

Triangulation::faceTable[(f1.getIndex())].addVertex(vb2.getIndex());

Triangulation::faceTable[(f2.getIndex())].addVertex(vb1.getIndex());

Triangulation::faceTable[(f1.getIndex())].addEdge(ea2.getIndex());

Triangulation::faceTable[(f2.getIndex())].addEdge(eb1.getIndex());

Triangulation::faceTable[(f1.getIndex())].addFace(fa2.getIndex());

Triangulation::faceTable[(fa2.getIndex())].addFace(f1.getIndex());

Triangulation::faceTable[(f2.getIndex())].addFace(fb1.getIndex());

Triangulation::faceTable[(fb1.getIndex())].addFace(f2.getIndex());

}

About the authors

Alex Henniges is a junior double majoring in Math and Computer Science.
Thomas Williams is a senior in Comprehensive Mathematics with a minor in
Computer Science and a background in Math Education. Mitch Wilson is a
senior majoring in Applied Math and Mechanical Engineering.

38

