Assignment 5, due March 2

1. Let \(f \) be a continuous map of the unit interval into itself, such that \(f(0) = 0 \) and \(f(0) = 1 \). Show that \(f \) is homotopic to the identity map modulo points 0 and 1, i.e. that there exists a homotopy between \(f \) and identity which is constant at the endpoints.

2. Let \(h : X \to X' \) be a continuous map of topological spaces. For a topological space \(Y \) and a continuous map \(\alpha : X' \to Y \), let \(\Phi(\alpha) = \alpha \circ h \) — a map from \(X \) to \(Y \). Prove that if \(\alpha \) and \(\beta \) are homotopic, then so are \(\Phi(\alpha) \) and \(\Phi(\beta) \).

3. a) Suppose \(X \) is a topological space and \(A \) — its path-connected subspace. Prove that if \(A \) is a deformation retract of \(X \), then \(X \) is path-connected.

b)* Is the conclusion necessarily true if we only assume that \(X \) is a retract of \(A \)?

4. Prove that the zero-dimensional sphere \(\{-1, 1\} \) is not a retract of the one-dimensional disc \([-1, 1]\).

5. Define the Möbius strip \(M \) as a square with two opposite sides identified with the same orientation (identifying them with opposite orientations would give a cylinder). Find a (homeomorphic image of) circle \(C \) in \(M \) which is a deformation retract of \(M \).

6*. Let \(T \) be a torus and \(x \in T \). Prove that \(T \setminus \{x\} \) contains a deformation retract, homeomorphic to a wedge of two circles (a figure “eight”).