Assignment 9, due May 1

1. Prove the **Rank Theorem**: Let \(f : \mathbb{R}^m \to \mathbb{R}^n \) be a smooth function, \(m > n \). Suppose that at a point \(x_0 \in \mathbb{R}^m \) the rank of the tangent map \(df_{x_0} \) equals \(n \). Prove that there exist maps \(\phi \) and \(\psi \), such that \(\phi \) maps a neighborhood of \(x_0 \) diffeomorphically onto a neighborhood of 0 in \(\mathbb{R}^m \), \(\psi \) maps a neighborhood of \(f(x_0) \) diffeomorphically onto a neighborhood of 0 in \(\mathbb{R}^n \) and

\[
\psi \circ f \circ \phi^{-1}(x^1, \ldots, x^m) = (x^1, \ldots, x^n)
\]

for \(x = (x^1, \ldots, x^m) \) in the range of \(\phi \).

2. Let \(f : M^m \to N^n \) be a smooth map between manifolds of dimensions \(m \geq n \) and \(y \)—a regular value of \(f \). Use the rank theorem to prove that \(f^{-1}(y) \) is a smooth submanifold of dimension \(m - n \).

3. Let \(M \) be a manifold (without boundary) and \(f : M \to \mathbb{R} \)—a smooth function, having 0 as its regular value. Prove that the set of points \(x \in M \), where \(f(x) \geq 0 \) is a manifold with boundary and that the boundary is equal \(f^{-1}(0) \).

4. Let \(X \) be an \(m \)-dimensional manifold with boundary \(\partial X \) and \(f : X \to N \)—a smooth function into an \(n \)-dimensional manifold (without boundary), \(m > n \). Let \(y \) be a regular value both for \(f \) and for its restriction to \(\partial X \). Prove that \(f^{-1}(y) \) is an \(m - n \)-dimensional manifold with boundary and that its boundary is equal to the intersection of \(f^{-1}(y) \) with \(\partial X \).

5*. Prove that a compact, one-dimensional manifold with boundary is diffeomorphic to a finite union of closed intervals and/or circles.

6*. Recall that a manifold is orientable if the coordinate charts can be chosen so that all transition maps have positive Jacobi determinants. This definition extends to manifolds with boundary. Prove that if \(X \) is an orientable manifold with boundary, then \(\partial X \) is also orientable.