
Definition of the idea of a limit

The limit of f(x) as x approaches c is equal to L if the values

of f get closer and closer to L as x gets closer and closer to c.

We let δ represent the closeness of c to x, and ε the closeness

of f(x) to L. Then instead of saying x is “closer and closer to”,

we use the quantified phrases

|f(x)− L| < ε and |x− c| < δ.

Definition: Given a function f and a real number c in its domain,

and a real number L, we say

lim
x→c

f(x) = L

if for all ε > 0 there exists a δ > 0 such that for all x satisfying

0 < |x− c| < δ, we have |f(x)− L| < ε.
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Here’s an example of how to use this definition:

Theorem

lim
x→2

x2 = 4

Proof. Suppose ε > 0. We want to choose δ such that

|x2 − 4| < ε whenever |x− 2| < δ

Choose δ = min{1, ε/5}. Assume |x− 2| < δ. Then, since δ ≤ 1,
then |x + 2| ≤ 5. Also, we know that

|x− 2| <
ε

5
therefore |x− 2| <

ε

|x + 2|
and therefore

|x− 2||x + 2| < ε or |x2 − 4| < ε.



Definition of continuity

A function f is continuous at a point c if

lim
x→c

f(x) = f(c).

Suppose we have function f : D → R. We say f is continuous if

it is continuous at every point in D.

Suppose we have a continuous function f : R → R. This means

that for every c ∈ R, and for every ε > 0, there exists a δ > 0

such that for all x, if |x− c| < δ then |f(x)− f(c)| < ε.
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Theorem A function f : R → R is continuous if and only if for
all open sets U ⊂ R, f−1(U) is an open set.

Recall that for a function f , the preimage of a set U is

f−1(U) = {x ∈ R : f(x) ∈ U}.

E.g., if f(x) = x2, and U = (1,2), f−1(U) = (1,
√

2)∪ (−
√

2,−1)

The theorem says that if a function is not continuous, we should
be able to find an open set U such that f−1(U) is not open. For
example, consider f(x) = [x]. We want to find an open set U
such that f−1(U) is not closed. Choose U = (−1/2,1/2), then
f−1(U) = [0,1).

To prove this theorem, we will use the fact that a set U is open
if and only if for every x ∈ U , there exists an ε > 0 such that
(x− ε, x + ε) ⊂ U .
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Proof of Theorem

We want to prove the following are equivalent, given a function

f : R → R:

1) For every c ∈ R, and for every ε > 0, there exists a δ > 0 such

that for all x ∈ R, if |x− c| < δ then |f(x)− f(c)| < ε.

2) For all open sets U ⊂ R, f−1(U) is an open set.
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Proof that (1) implies (2). Assume (1). Let U be an open

subset of R. We want to show that f−1(U) is an open set.

Therefore we must show that for all c ∈ f−1(U), there exists an

δ > 0 such that (c− δ, c + δ) ⊂ f−1(U).

Let c ∈ f−1(U). Then f(c) ∈ U . Since U is open, there exists an

ε > 0 such that (f(c) − ε, f(c) + ε) ⊂ U . Since f is continuous,

there exists a δ > 0 such that for all x, if |x− c| < δ then |f(x)−
f(c)| < ε.

We claim that this δ is the δ we are looking for from the first

paragraph. That is, we claim that (c−δ, c+δ) ⊂ f−1(U). That is,

we claim that for every x such that |x− c| < δ, we have f(x) ∈ U .

This is because |f(x)− f(c)| < ε and (f(c)− ε, f(c) + ε) ⊂ U .
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Proof that (2) implies (1). Assume (2), i.e, that for all open

sets U ⊂ R, f−1(U) is an open set. Let c ∈ R and let ε > 0. We

want to show (1).

Let U = (f(c)− ε, f(c) + ε). Since f−1(U) is open, and contians

x1. There exists a δ > 0 such that (c− δ, c + δ) ⊂ f−1(U). This

is just a reformulation of (1).
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Let f : R → R be a continuous function.

Theorem 1 (Extreme Value Theorem) On any closed bounded

interval [a, b], a continuous function f : R → R has a maximum

and a minimum.

Theorem 2(Intermediate Value Theorem) If f(a) < y < f(b),

then there exists x such that a < x < b such that f(x) = y.

Theorem 3 If U ⊂ R is a compact subset, and f : R → R is a

continuous function, then f(U) is also compact.
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First let’s see how Theorem 3 implies Theorem 1. By the Heine-

Borel theorem, a set is compact if and only if it is closed and

bounded.

Theorem 3 implies Theorem 1 Suppose we know that The-

orem 3 is true. Let [a, b] be a closed bounded interval and let

f : R → R be a continuous function. By the Heine-Borel theo-

rem, [a, b] is compact. So f([a, b]) is compact. Then f([a, b]) is

closed and bounded. So it has an upper bound, so it has a least

upper bound, and since it’s closed, the least upper bound is a

maximum. Similarly for the minimum.
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Theorem 3 If U ⊂ R is a compact subset, and f : R → R is a

continuous function, then f(U) is also compact.

Proof Let U be a compact subset of R and let f : R → R be a

continuous function. We want to show that f(U) is compact.

In other words, for every cover of f(U), we want to show that

there exists a finite subcover. Let F be a cover of f(U). Define

a cover G of U , by

G = {f−1(V ) : V ∈ F}.

We claim (1) that G is an open cover of U . Then G has a

finite subcover, say {f−1(V1), f
−1(V2), . . . , f

−1(VN)}. We claim

(2) that {V1, V2, . . . , VN} covers f(U), and so is a finite subcover

of F.
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Proof of claim (1). So we want to show (a) that every element

x ∈ U is contained in one fo the sets in G, and (b) that every set

in G is open. The second condition follows from Theorem Friday.

So let’s prove (a). So let x ∈ U . Thyen f(x) ∈ f(U). Then there

exists a set V ∈ F such that f(x) ∈ V . Then x ∈ f−1(V ).

The proof of claim (2) is left as an exercise.


