Definition of the idea of a limit

The limit of f(x) as x approaches c is equal to L if the values
of f get closer and closer to L as x gets closer and closer to c.
We let § represent the closeness of ¢ to z, and ¢ the closeness
of f(x) to L. Then instead of saying = is “closer and closer to",
we use the quantified phrases

f(x) — Ll <e and |x—c|<é.

Definition: Given a function f and a real number c in its domain,
and a real number L, we say

fim f(2) = L
if for all ¢ > 0 there exists a é > 0 such that for all z satisfying
0<|zr—c| <§, wehave |f(x) — L| <e.



Here's an example of how to use this definition:

T heorem

lim 22 = 4

r—2

Proof. Suppose € > 0. We want to choose § such that
z° — 4| < e whenever |z—2|<3§

Choose § = min{l,¢/5}. Assume |x — 2| < é. Then, since § < 1,
then |z 4+ 2| < 5. Also, we know that
€

 + 2]

x — 2| < % therefore |z —2|<

and therefore

z—2|lz+2|<e or |z°—4|<e



Definition of continuity

A function f is continuous at a point c if

im f(z) = f(c).

r—cC

Suppose we have function f: D — R. We say f is continuous if
It is continuous at every point in D.

Suppose we have a continuous function f : R — R. This means
that for every ¢ € R, and for every ¢ > 0, there exists a § > O
such that for all z, if |[x —c| < § then |f(x) — f(c)] < e.



Theorem A function f : R — R is continuous if and only if for
all open sets U C R, f~1(U) is an open set.

Recall that for a function f, the preimage of a set U is

FYU)={zeR: f(z) e U}

E.g., if f(z) =22, and U = (1,2), f~Y(U) = (1,V2)U(—=v2,-1)

T he theorem says that if a function is not continuous, we should
be able to find an open set U such that f~1(U) is not open. For
example, consider f(x) = [x]. We want to find an open set U
such that f~1(U) is not closed. Choose U = (—1/2,1/2), then

f~1(U) =10,1).

To prove this theorem, we will use the fact that a set U is open
if and only if for every x € U, there exists an ¢ > 0 such that
(r—e,x+¢€)CU.



Proof of Theorem

We want to prove the following are equivalent, given a function
f R—R:

1) For every c € R, and for every € > 0, there exists a § > 0 such
that for all z € R, if |[x —c| < then |f(x) — f(c)| < e.

2) For all open sets U C R, f~1(U) is an open set.



Proof that (1) implies (2). Assume (1). Let U be an open
subset of R. We want to show that f~1(U) is an open set.
Therefore we must show that for all ¢ € f~1(U), there exists an
§ > 0 such that (c—6,¢+6) c F~1(U).

Let c€ f~1(U). Then f(¢) € U. Since U is open, there exists an
e > 0 such that (f(c) — ¢, f(c) +¢) C U. Since f is continuous,
there exists a § > 0 such that for all z, if |[x —c| < é then |f(x) —

fle)l <e.

We claim that this § is the é we are looking for from the first
paragraph. That is, we claim that (¢—46,c+46) C f~1(U). That s,
we claim that for every z such that |z —c¢| < §, we have f(z) € U.
This is because |f(x) — f(c¢)| < e and (f(c) —e€, f(c) +€) CU.
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Proof that (2) implies (1). Assume (2), i.e, that for all open
sets U C R, f~1(U) is an open set. Let c€ R and let e > 0. We
want to show (1).

Let U = (f(c) —e¢, f(c) 4+ ¢€). Since f~1(U) is open, and contians
r1. There exists a 6 > 0 such that (c—46,c+48) ¢ f~1(U). This
is just a reformulation of (1).



Let f: R — R be a continuous function.

Theorem 1 (Extreme Value Theorem) On any closed bounded
interval [a,b], a continuous function f : R — R has a maximum
and a minimum.

Theorem 2(Intermediate Value Theorem) If f(a) <y < f(b),
then there exists x such that a < z < b such that f(z) = y.

Theorem 3 If U C R is a compact subset, and f : R — R is a
continuous function, then f(U) is also compact.



First let's see how Theorem 3 implies Theorem 1. By the Heine-
Borel theorem, a set is compact if and only if it is closed and
bounded.

Theorem 3 implies Theorem 1 Suppose we know that The-
orem 3 is true. Let [a,b] be a closed bounded interval and let
f iR — R be a continuous function. By the Heine-Borel theo-
rem, [a,b] is compact. So f([a,b]) is compact. Then f([a,b]) is
closed and bounded. So it has an upper bound, so it has a least
upper bound, and since it's closed, the least upper bound is a
maximum. Similarly for the minimum.



Theorem 3 If U C R is a compact subset, and f : R — R is a
continuous function, then f(U) is also compact.

Proof Let U be a compact subset of R and let f : R — R be a
continuous function. We want to show that f(U) is compact.
In other words, for every cover of f(U), we want to show that
there exists a finite subcover. Let F be a cover of f(U). Define
a cover g of U, by

G={r"Y(Vv):verFh

We claim (1) that G is an open cover of U. Then G has a
finite subcover, say {f~1(V1), f~1(Vo),..., fF~H(Vx)}. We claim
(2) that {Vq,Vo,...,Vn} covers f(U), and so is a finite subcover
of F.



Proof of claim (1). So we want to show (a) that every element
x € U is contained in one fo the sets in G, and (b) that every set
in G is open. The second condition follows from Theorem Friday.
So let's prove (a). Solet x € U. Thyen f(x) € f(U). Then there
exists a set V € F such that f(z) € V. Then z € f~1(V).

The proof of claim (2) is left as an exercise.



