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In 1973 Morris Kline [1] criticized the state of school algebra as he saw it: 

 They are taught many dozens of such processes: factoring, solving equations in one and two unknowns, the uses of exponents, addition, subtraction, multiplication and division of polynomials, and operations with negative numbers and radicals such as  EQ  \R(,3). In each case they are asked to imitate what the teacher and the text show them how to do. Hence …the students are faced with a bewildering variety of processes which they repeat by rote in order to master them. The learning is almost always sheer memorization.

It is also true that the various processes are disconnected, at least as usually presented. They rarely have much to do with each other. While all these processes do contribute to the goal of enabling the student to perform algebraic operations in advanced mathematics, …as far as the students can see the topics are unrelated. They are like pages torn from a hundred different books, no one of which conveys the life, meaning and spirit of mathematics. This presentation of algebra begins nowhere and ends nowhere. 

Already at the time of this description of the traditional curriculum reform efforts had been under way, aimed at making algebra seem less meaningless to students by introducing the concept of a function. More recent curriculum development efforts have also emphasized functions as a central organizing principle: modeling linear and exponential growth, for example, or introducing quadratic equations in the context of motion of a falling object.

There are some good aspects to this approach. First, the use of realistic contexts can help motivate students. Second, it can help students grasp abstract concepts and make them real. Third, functions are indeed an important concept that students have difficulty understanding. The traditional curriculum often left students unable to answer the simplest conceptual questions about functions.

However, a focus on functions and their graphs can veil the ideas at the heart of algebra: symbols, expressions, and equations. Sometimes it seems we are doomed to either fetishize or push aside these beautiful ideas. My purpose in this note is to present some examples which convey “the life, meaning, and spirit” of algebra—examples which both restore algebra from its all-too-common status as a “bewildering variety of processes” to its rightful position in the realm of mathematical ideas, and to illustrate the balance between between procedural fluency and conceptual understanding needed to bring it alive.

Reading Expressions

Students who go beyond algebra might be expected to make the following sorts of observations about expressions in subsequent courses, or at least to be able to see why the observations are true when their instructor makes them: 

•
 EQ P(1+ \F(r,12))\s\up5(12n) is linear in P (finance) 

•
 EQ  \F(n(n+1)(2n+1),6) is a cubic polynomial with leading coefficient 1/3 (calculus) 

•
 EQ L\s\do5(0) \R(,1 \b ( \F(v,c))\s\up14(2)) vanishes when v=c (physics) 

•
 EQ  \F(, \R(,n)) halves when n is multiplied by 4 (statistics). 

What combination of skills and concepts is needed to make these observations? 

The first observation requires the ability to view everything after the P as a single blob which does not depend on P. This seems to be a conceptual ability. Can that ability be acquired without hands-on experience with algebraic manipulation?  How would its acquisition be affected if symbolic manipulation programs replaced paper-and-pencil drill in algebra skills? 

The second observation can be verified by an expansion. If, however, the observation is made in passing by an instructor eager to get to the punchline about the integral of  EQ f(x)=x\s\up5(2), then how is the student to see the fact directly?  I imagine a sort of fast-forward mental calculation, ignoring the irrelevant points. Rather than trying to sort this ability into procedural skill or conceptual understanding, one is tempted to describe it as an inseparable blend of the two (conceptual skill?  procedural understanding? ).

Similarly, one might see the third observation by setting the expression equal to zero and solving for v, and one might see the fourth observation by substituting 4n for n and doing some algebraic manipulation. But in each case there is no time for that as the instructor rushes on, and in each case there seems to be, hovering in the background, a higher level of conceptual understanding that enables one to see the fact directly. I see this higher level as analogous to the higher levels of reading comprehension that one expects students to have acquired by the time they leave high school.

The Joy of Symbol Manipulation

One of the most profound ideas in algebra is the idea of an equation: a statement whose truth or falsity is contingent on the values assigned to the variables. It is the contingency of equations that enables them to make “unknowns” known: the idea that they can be evaluated to true or false statements, and thereby point to the value of an unknown without directly assigning that value, is an important and difficult idea. Like many mathematicians, I enjoyed solving puzzles as a child: I well remember the intellectual excitement of first realizing that most of them became mechanical when translated into algebraic notation.

As an example of the beautiful machinery of algebra, consider the following proof of Ptolemy’s theorem, which states that in a cyclic quadrilateral (one that can be inscribed in a circle) the product of the diagonals is the sum of the products of opposite sides. In algebraic notation, referring to Figure 1, this statement becomes the beautifully symmetric equation 


xy=ac+bd.

The many ways of writing this equation coming from the commutativity of addition and multiplication play an important role in the proof to come. 
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Figure 1: A cyclic quadrilateralTC "1 A cyclic quadrilateral" \f f
If  is the angle between sides a and b, then applying the law of cosines on either side of the diagonal x gives two equations: 


 EQ x\s\up5(2)
 EQ =
 EQ a\s\up5(2)+b\s\up5(2)2abcos

 EQ x\s\up5(2)
 EQ =
 EQ c\s\up5(2)+d\s\up5(2)+2cdcos.

 EQ 
(Here we have used the fact that opposite angles in a cyclic quadrilateral are supplementary.) Eliminating cos gives, after simplification, 


 EQ x\s\up5(2)= \F(b\s\up5(2)cd+a\s\up5(2)cd+abc\s\up5(2)+abd\s\up5(2),ab+cd).
The numerator cries out for factorization, but momentarily resists, until we rewrite it as (bc)(bd)+(ac)(ad)+(ac)(bc)+(ad)(bd) and factor by grouping: 


 EQ x\s\up5(2)= \F((ac+bd)(ad+bc),ab+cd).
(1)

We could repeat the calculation for y. But it is more fun to look at the diagram and shift our perspective clockwise, so that y takes the role of x, b that of a, c that of b, d that of c, and a that of d. Making these substitutions in (1), we get 


 EQ y\s\up5(2)= \F((bd+ca)(ba+cd),bc+da)= \F((ac+bd)(ab+cd),ad+bc).
When we multiply the expressions for  EQ x\s\up5(2) and  EQ y\s\up5(2) we get some cancellation, leaving 


 EQ x\s\up5(2)y\s\up5(2)=(ac+bd)\s\up5(2).
Taking square roots gives us Ptolemy’s theorem.

Connections Between Algebra and Geometry

My next and final example is inspired by a beautiful article in Mathematics Teacher [3]. Working with a group of teachers, the authors of that paper were considering whether two triangles with the same area and same perimeter are necessarily congruent. The answer is no, but counterexamples are not immediately apparent, and it is particularly interesting to find pairs of triangles with rational sides which have the same area and perimeter. One such pair is the triangle with side lengths 3, 4, and 5, and the triangle with side lengths 41/15, 101/21, and 156/35. Figuring out how to find such examples is a journey that leads directly from a simple question in high school mathematics to current research in number theory. Here is a brief sketch of the beginning of that journey.

We can attack the question by considering triangles circumscribed around a circle of fixed radius r, as in Figure 2. Let the triangle have area A and semiperimeter s. Then it is a pleasant exercise in geometry to see that 


A=rs
(2)

and 


 EQ s=r(tan \F(a,2)+tan \F(b,2)+tan \F(c,2))\,
(3)

where a, b, and c are the angles at the center of the circle formed by the radii perpendicular to the sides of the triangle. 
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Figure 2: TriangleTC "2 Triangle" \f f
Combining equations (2) and (3), we get 


 EQ  \F(s\s\up5(2),A)= \F(s,r)=tan \F(a,2)+tan \F(b,2)+tan \F(c,2).
(4)

Let x=tan(a/2), y=tan(b/2). Note that the triangle is determined up to similarity by the pair (x,y). Since a+b+c=2, we have 


 EQ  \F(c,2)= \F(a,2) \F(b,2)\,
so 


 EQ tan \b ( \F(c,2))=tan \b ( \F(a,2) \F(b,2))=tan \b ( \F(a,2)+ \F(b,2))= \F(x+y,1xy).
Referring back to equation (4) we see that, for fixed k, the equation 


 EQ x+y \F(x+y,1xy)=k
(5)

parametrizes pairs (x,y) from which we can reconstruct triangles with  EQ k=s\s\up5(2)/A. Note that  EQ s\s\up5(2)/A is invariant under similarity, so scaling the triangle to a fixed area (say, A=1) would then give us different triangles with the same area and same perimeter.

We rewrite the equation (5) as 


 EQ kxyx\s\up5(2)yxy\s\up5(2)=k.
(6)

This defines a cubic curve in the xy-plane, known as an elliptic curve. Figure 3 shows the curve for the case k=6. Not every point on this curve corresponds to a triangle, since there are restrictions on the angles a, b, and c, which restrict x and y to a region containing the loop-like component of the curve in the first quadrant, shown close-up on the right of Figure 3.
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Figure 3: Curve parametrizing triangles with equal area and perimeter, k=6TC "3 Curve parametrizing triangles with equal area and perimeter, k=6" \f f
Points on this curve with rational coordinates correspond to triangles with rational sides. For example, the (3,4,5) triangle is represented by six points on the curve with k=6 (corresponding to the 3 choices of base and two choices of orientation). These points have coordinates (1,2), (2,1), (1,3), (3,1), (2,3), and (3,2). We want to find some other points with rational coordinates in order to get another triangle with the same area and perimeter as the (3,4,5) triangle. We can do this by the secant method: a line through two rational points intersects the curve in a third rational point. By playing around with secant method for these points you can find the point corresponding to the triangle (41/15,101/21,156/35). (In the process, you will find points on other components of the curve.) Triangles with integer sides and integer area are called Heron triangles. Obviously any triangle with rational sides and rational area can be scaled up to a Heron triangle.

Elliptic curves are the subject of current research in number theory. In particular, the curve (6) has been studied in slightly different form by van Luijk [4], who finds infinitely many families, each of which contains infinitely many triangles with rational sides and rational area, all with the same perimeter and area.

Can We Make Algebra Dynamic? 

The previous section gives an example of one way of answering this question. Dynamic geometry software provides a rich environment for investigating geometric questions that are closely linked to algebraic questions. 

Is there a way of bringing algebraic manipulations alive directly?  The traditional prescription is extensive practice. But as the information environment becomes saturated with computational power, this prescription will seem more and more bizarre to students, and we need to explore others.

Is it possible to design a dynamic algebra program that allows students to read and work with expressions and equation without withdrawing cognitive access to the manipulations?  To what extent can computer algebra systems replace paper and pencil calculation, while still allowing students to acquire the symbolic understanding exemplified in this paper?  In [2] I propose a methodology for approaching this question. Here I simply point out that the existence of computer algebra systems, whether you want to embrace them or ban them, increases the need to focus on the core ideas of algebra: symbols, expressions, equations, and functions.
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�The title of my talk comes from the treatise that gave us the word algebra, Al-Khwarizmi’s Hisab al-jabr w’al-muqabala (Book of Restoring and Balancing), c. 825 CE.


�I am indebted to Dick Askey for telling me about this example.








