Final Review Day 1, Math 215, Spring11, section 2

For full credit, show all work.

1 Consider the linear system

\[\begin{align*}
 kx + y + z &= 1 \\
 x + ky + z &= 1 \\
 x + y + kz &= 1
\end{align*} \]

For what values of \(k \) does the system have a unique solution? No solution? Infinitely many solutions?

2 Find the standard matrix of the linear transformation \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) that reflects points in the line \(x_2 = x_1 \) and then reflects the result in the horizontal \(x_1 \)-axis.

3 Let \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) be a linear transformation such that \(T(e_1) = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}, T(e_2) = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}, T(e_3) = \begin{bmatrix} 0 \\ -7 \\ 5 \end{bmatrix} \), where \(e_1, e_2, e_3 \) are the columns of the \(3 \times 3 \) identity matrix. Determine if \(T \) is a one-to-one linear transformation. Explain.

4 Suppose \(M \) is a \(4 \times 4 \) matrix with linearly independent columns, explain why the equation \(Mx = b \) has a unique solution for \(\forall b \in \mathbb{R}^4 \).

5 Let \(B = \{ e_1, e_2 \} \) and \(B' = \{ e_1 + e_2, 2e_1 + 3e_2 \} \) are bases for \(\mathbb{R}^2 \). Find the change of basis matrix from \(B \) to \(B' \).

6 Let \(B \) and \(B' \) as defined in problem 5. Let \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) be defined by \(T(e_1) = 3e_1 - 2e_2 \), \(T(e_2) = e_1 + 4e_2 \). Write down the matrix representation for \(T \) in the standard basis \(B \). Then use the change of basis matrix from problem 5 to find the matrix representation for \(T \) in basis \(B' \).

7 Let \(A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix} \). Use a) Gaussian elimination, b) cofactor expansion and c) permutation, to compute its determinant.

8 Let \(V = \mathcal{D} \) is the vector space of differentiable functions and \(W = \{ f \in \mathcal{D} | f'(x) + f(x) = 0 \} \). Show that \(W \) is a subspace of \(V \).

9 \(W = \left\{ A \in M_{22} | A = \begin{bmatrix} x & -x \\ y & z \end{bmatrix} \right\} \) is a subspace of \(M_{22} \). Find a basis for \(W \).

10 Find the coordinate vector for \(p(x) = 2x^2 + x + 3 \) in the basis \(B = \{ 1, x - 1, (x - 1)^2 \} \) for \(\mathcal{P}_2 \).

11 Let \(T : \mathcal{P}_2 \to \mathcal{P}_2 \) where \(T(1) = x, T(x - 1) = x^2 + 1, T((x - 1)^2) = 1 - x \). Find \(T(2x^2 + x + 3) \).

12 Let \(A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix} \). Find its eigenvalues and a basis for its eigenspaces. If \(A \) is diagonalizable, find the invertible matrix \(P \) and diagonal matrix \(D \) such that \(D = P^{-1}AP \).
13 Use the diagonalization from the previous problem to solve the system of differential equation
\[\mathbf{x}' = A\mathbf{x} \] where \(A \) is as defined above, with initial condition \(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \).

14 Find the eigenvalues of the matrix \(A = \begin{pmatrix} 11 & -15 \\ 6 & -7 \end{pmatrix} \). If this matrix describes a dynamical system \(x_n = Ax_{n-1} \), what type of fixed point is the zero vector?

15 Every year, 10% of all University of Okoboji students change their major to mathematics, and 25% of math majors change their majors to something else, or graduate. If the university enrollment remains a constant 13,500 and the math department starts with 100 majors, what is the long term departmental enrollment?

16 Find the orthogonal projection of \(\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \) onto the plane in \(\mathbb{R}^3 \) whose equation is \(x - 2y + z = 0 \).

17 Find the orthogonal decomposition of \(\mathbf{x} = \begin{pmatrix} 49 \\ 49 \\ 49 \end{pmatrix} \) with respect to the subspace \(W = \text{span} \left(\begin{pmatrix} 2 \\ 3 \\ -6 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix} \right) \).

18 Let \(\mathbf{v} = \begin{pmatrix} 9 \\ 1 \\ 1 \end{pmatrix}, \mathbf{u}_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix} \) and \(W = \text{span}(\mathbf{u}_1, \mathbf{u}_2) \). Let \(U = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{pmatrix} \). Compute \((UU^T)v \). What is the geometric interpretation of that?

19 True/False. Give reasons.

i) In some cases, it is possible for 6 vectors to span \(\mathbb{R}^5 \).

ii) If a matrix \(A \) is \(m \times n \) and if the equation \(A\mathbf{x} = \mathbf{b} \) has a solution for some \(\mathbf{b} \), then the columns of \(A \) span \(\mathbb{R}^m \).

iii) If a system of linear equations has two different solutions, then it has infinitely many solutions.

iv) If \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) span a plane in \(\mathbb{R}^3 \) and if \(\mathbf{v}_3 \) is not in that plane, then \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \) is a linearly independent set.

v) The rank of a matrix is equal to the number of its nonzero rows.

vi) If \(A \) is an \(m \times n \) matrix of rank \(m \), then the system \(A\mathbf{x} = \mathbf{b} \) must have a solution.

vii) If \(A \) is an \(n \times n \) matrix and \(A\mathbf{x} = \mathbf{0} \) for some \(\mathbf{x} \neq \mathbf{0} \), then \(\det(A) = 0 \).

viii) If \(A, B \) are \(n \times n \) matrices and \(B \) is invertible, then \(\det(B^{-1}AB^T) = \det(A) \).

ix) The sum of two eigenvectors of a matrix is always an eigenvector of the matrix.

x) If \(\lambda \) is an eigenvalue of \(A \), then the geometric multiplicity of \(\lambda \) equals the rank of \(A - \lambda I \).
xi) Every vector space has a finite basis.

xii) If \(T : V \to W \) is a function from a vector space \(V \) to a vector space \(W \), then \(T \) is linear if and only if \(T(x + y) = T(x) + T(y) \).

xiii) If \(T \) is a linear transformation, then \(T \) maps a linearly independent set to a linearly independent set.

xiv) The empty set is a subspace of every vector space.

xv) A matrix \(Q \) is orthogonal if and only if \(\det(Q) = \pm 1 \).

xvi) If \(A \) is an \(m \times n \) matrix, then \(\text{rank}(A) + \text{nullity}(A) = m \).

xvii) Any orthogonal set of vectors is linearly independent. What if “orthogonal” is replaced by “orthonormal”?