## Homework 10

1 Derive the row-column rule of matrix product from the definition constructed from compositions of linear transformations, i.e. show that $A B=\left[\begin{array}{llll}A \overrightarrow{b_{1}} & A \overrightarrow{b_{2}} & \cdots & A \overrightarrow{b_{p}}\end{array}\right] \Rightarrow A B=\sum_{k=1}^{n} a_{i k} b_{k j}$ if $A=$ $\left[a_{i j}\right]$ is $m \times n, B=\left[b_{i j}\right]$ is $n \times p$.
2 Decide whether the following statement is true or false. Prove it if it's true or give a counterexample if it's false:

For any $n \times n$ matrix $A$, all entries of $A^{2}$ are non-negative.
3 Show that for $\vec{x} \in \mathbb{R}^{n}$, if $\left(\vec{x}^{T}\right) \vec{x}=0$ then $\vec{x}=0$. Use this to show that if $A^{T} A=0$, then $A=0$ where $A$ is an $n \times n$ matrix.

