Homework 12

1 Suppose $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are two distinct points on the line $y=m x+b$. Show that the vectors $\left[\begin{array}{l}x \\ x_{1} \\ x_{2}\end{array}\right],\left[\begin{array}{l}y \\ y_{1} \\ y_{2}\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ are linearly dependent. Use this to show that the equation of the line can be described by det $\left[\begin{array}{ccc}1 & x & y \\ 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2}\end{array}\right]=0$.

2 Use the permutation definition of determinant to show that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ where A is an $n \times n$ matrix.

3 Show that $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}$.
$4 f_{1}(x), f_{2}(x)$ and $f_{3}(x)$ are three given functions. Show that if there are non-zero real numbers a_{1}, a_{2} and a_{3} such that $a_{1} f_{1}(x)+a_{2} f_{2}(x)+a_{3} f_{3}(x)=0$ for all x, then det $\left[\begin{array}{lll}f_{1}^{\prime \prime}(x) & f_{1}^{\prime}(x) & f_{1}(x) \\ f_{2}^{\prime \prime}(x) & f_{2}^{\prime}(x) & f_{2}(x) \\ f_{3}^{\prime \prime}(x) & f_{3}^{\prime}(x) & f_{3}(x)\end{array}\right]=0$ for all x.

