Homework 13

1 Consider $V = \mathbb{R}^+ = \{x > 0\}$ with vector addition \oplus and scalar multiplication \odot defined by

 $x \oplus y = xy$ and $k \odot x = x^k$ for any $x, y \in V$ and any scalar k.

Show that (V, \oplus, \odot) is a vector space.

- 2 Let $H = \{p \in \mathbb{P}_n | p(1) = 0\}$ where \mathbb{P}_n is the vector space consisting of all polynomial of degree $\leq n$. Show that H is a subspace of \mathbb{P}_n .
- 3 Suppose H and S are subspaces of a vector space V. Show that $H \cap S$ is a subspace of V.
- 4 Suppose Nul(A) = $\{\vec{0}\}\$ for some $m \times n$ matrix A. Show that the matrix transformation $\vec{x} \mapsto A\vec{x}$ is one-to-one.