Homework 13

1 Consider $V=\mathbb{R}^{+}=\{x>0\}$ with vector addition \oplus and scalar multiplication \odot defined by $x \oplus y=x y$ and $k \odot x=x^{k}$ for any $x, y \in V$ and any scalar k.

Show that (V, \oplus, \odot) is a vector space.
2 Let $H=\left\{p \in \mathbb{P}_{n} \mid p(1)=0\right\}$ where \mathbb{P}_{n} is the vector space consisting of all polynomial of degree $\leq n$. Show that H is a subspace of \mathbb{P}_{n}.

3 Suppose H and S are subspaces of a vector space V. Show that $H \cap S$ is a subspace of V.
4 Suppose $\operatorname{Nul}(A)=\{\overrightarrow{0}\}$ for some $m \times n$ matrix A. Show that the matrix transformation $\vec{x} \mapsto A \vec{x}$ is one-to-one.

