Homework 14

1 Let V be a vector space and $B=\left\{\vec{b}_{1}, \vec{b}_{2}, \cdots, \vec{b}_{n}\right\}$ be a basis for V and $\vec{v}, \vec{v}_{1}, \cdots, \vec{v}_{k} \in V$. If \vec{v} is a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{k}$ with weights c_{1}, \cdots, c_{k}, show that the same relation holds for the associated coordinate vectors, i.e. $[\vec{v}]_{B}$ is a linear combination of $\left[\vec{v}_{1}\right]_{B},\left[\vec{v}_{2}\right]_{B}, \cdots,\left[\vec{v}_{k}\right]_{B}$ with the same weights.

2 Let H be an n-dimensional subspace of an n-dimensional vector space V. Show that $H=V$.
3 Show that an $n \times n$ matrix can have at most n distinct eigenvalues.
4 Suppose an $n \times n$ matrix A has eigenvalue λ. Show that the λ-eigenspace is a subspace of \mathbb{R}^{n}.
5a) Determine the eigenvalue(s) of $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$ (without using characteristic equation that we have not discussed) and find a basis for the associated eigenspace.
b) The algebraic multiplicity of an eigenvalue λ is the number of copies of λ as an eigenvalue for A (at this point, I just want you to read off from A how many times a number appears as an eigenvalue of A). The geometric multiplicity of λ is the dimension of the eigenspace, i.e. the number of linearly independent eigenvectors associated with λ. What is the algebraic and geometric multiplicity for the eigenvalue(s) you obtained for A in part (a)?
c) Find \vec{v}_{2} such that $(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}$ where \vec{v}_{1} is an eigenvector for λ that you obtained in part (a). \vec{v}_{2} is called a generalized eigenvector. Are \vec{v}_{1}, \vec{v}_{2} linearly independent? Explain.

Note: This exercise is to demonstrated that if we do not have enough eigenvectors to form a basis for the underlying vector space because the algebraic multiplicity $>$ geometric multiplicity for eigenvalue λ, we can complete the set of linearly independent eigenvectors by generalized eigenvectors to form a basis for the underlying vector space.

