Homework 14

- 1 Let V be a vector space and $B = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ be a basis for V and $\vec{v}, \vec{v}_1, \dots, \vec{v}_k \in V$. If \vec{v} is a linear combination of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ with weights c_1, \dots, c_k , show that the same relation holds for the associated coordinate vectors, i.e. $[\vec{v}]_B$ is a linear combination of $[\vec{v}_1]_B, [\vec{v}_2]_B, \dots, [\vec{v}_k]_B$ with the same weights.
- 2 Let H be an n-dimensional subspace of an n-dimensional vector space V. Show that H = V.
- 3 Show that an $n \times n$ matrix can have at most n distinct eigenvalues.
- 4 Suppose an $n \times n$ matrix A has eigenvalue λ . Show that the λ -eigenspace is a subspace of \mathbb{R}^n .
- 5a) Determine the eigenvalue(s) of $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ (without using *characteristic equation* that we have not discussed) and find a basis for the associated eigenspace.
- b) The **algebraic multiplicity** of an eigenvalue λ is the number of copies of λ as an eigenvalue for A (at this point, I just want you to read off from A how many times a number appears as an eigenvalue of A). The **geometric multiplicity** of λ is the dimension of the eigenspace, i.e. the number of linearly independent eigenvectors associated with λ . What is the algebraic and geometric multiplicity for the eigenvalue(s) you obtained for A in part (a)?
- c) Find \vec{v}_2 such that $(A \lambda I)\vec{v}_2 = \vec{v}_1$ where \vec{v}_1 is an eigenvector for λ that you obtained in part (a). \vec{v}_2 is called a *generalized eigenvector*. Are \vec{v}_1, \vec{v}_2 linearly independent? Explain.
- Note: This exercise is to demonstrated that if we do not have enough eigenvectors to form a basis for the underlying vector space because the algebraic multiplicity > geometric multiplicity for eigenvalue λ , we can complete the set of linearly independent eigenvectors by generalized eigenvectors to form a basis for the underlying vector space.