Homework 15 - cover lectures through 4/8

1 The trace of an $n \times n$ matrix A is the sum of its diagonal entries, i.e. $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$. Consider a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Show that $\operatorname{tr}(A)=\lambda_{1}+\lambda_{2}$ and $\operatorname{det}(A)=\lambda_{1} \lambda_{2}$, where λ_{1}, λ_{2} are eigenvalues of A.
Note: this relation between trace, determinant of A and its eigenvalues persists for matrices of higher dimensions.
$2 A$ is an $n \times n$ diagonalizable matrix. Show that A satisfies its own characteristic equation by following these steps:
a) The characteristic polynomial, $f(\lambda)$, is an n degree polynomial in λ, i.e. $f(\lambda)=\sum_{k=0}^{n} c_{k} \lambda^{k}$. Consider $f(A)=c_{0} I+c_{1} A+c_{2} A^{2}+\cdots+c_{n} A^{n}$. Find the corresponding polynomial for D where D is the diagonalization of A.
b) Show that the polynomial of D from part (a) has to equal zero (warning: do not already assume $f(A)=0$). Use this to conclude that $f(A)=0$ and hence A satisfies its own characteristic equation.
3 Let $A=\left[\begin{array}{ll}7 & -9 \\ 4 & -5\end{array}\right]$.
a) Argue that A is not diagonalizable using the algebraic and geometric multiplicities of its eigenvalue(s). Find a basis for its eigenspace(s).
b) Recall from homework 14 that a vector \vec{v}_{2} is a generalized eigenvector for an eigenvalue λ if $(A-$ $\lambda I) \vec{v}_{2}=\vec{v}_{1}$ where \vec{v}_{1} is an eigenvector associated with λ. Note that a matrix is not diagonalizable if there is no eigen-basis. We can complete the set of linearly independent eigenvectors by generalized eigenvectors to form a basis for the underlying vector space. Construct such a basis for A.
c) Use the basis from part (b) to construct the similarity transformation matrix P. Compute the similarity transformation $J=P^{-1} A P$. J is called the Jordan (canonical) form of A, and is the simplest similar matrix of A.

