Homework 15 – cover lectures through 4/8

1 The trace of an $n \times n$ matrix A is the sum of its diagonal entries, i.e. $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$. Consider a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Show that $\operatorname{tr}(A) = \lambda_1 + \lambda_2$ and $\det(A) = \lambda_1 \lambda_2$, where λ_1, λ_2 are eigenvalues of A.

Note: this relation between trace, determinant of A and its eigenvalues persists for matrices of higher dimensions.

- 2 A is an $n \times n$ diagonalizable matrix. Show that A satisfies its own characteristic equation by following these steps:
- a) The characteristic polynomial, $f(\lambda)$, is an *n* degree polynomial in λ , i.e. $f(\lambda) = \sum_{k=0}^{n} c_k \lambda^k$. Consider $f(A) = c_0 I + c_1 A + c_2 A^2 + \dots + c_n A^n$. Find the corresponding polynomial for *D* where *D* is the diagonalization of *A*.
- b) Show that the polynomial of D from part (a) has to equal zero (warning: do not already assume f(A) = 0). Use this to conclude that f(A) = 0 and hence A satisfies its own characteristic equation.

3 Let $A = \begin{bmatrix} 7 & -9 \\ 4 & -5 \end{bmatrix}$.

- a) Argue that A is not diagonalizable using the algebraic and geometric multiplicities of its eigenvalue(s). Find a basis for its eigenspace(s).
- b) Recall from homework 14 that a vector \vec{v}_2 is a generalized eigenvector for an eigenvalue λ if $(A \lambda I)\vec{v}_2 = \vec{v}_1$ where \vec{v}_1 is an eigenvector associated with λ . Note that a matrix is not diagonalizable if there is no eigen-basis. We can complete the set of linearly independent eigenvectors by generalized eigenvectors to form a basis for the underlying vector space. Construct such a basis for A.
- c) Use the basis from part (b) to construct the similarity transformation matrix P. Compute the similarity transformation $J = P^{-1}AP$. J is called the Jordan (canonical) form of A, and is the simplest similar matrix of A.