Homework 16 - cover lectures through 4/15

1 Let $\vec{u}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ and $W=\operatorname{span}(\vec{u}, \vec{v})$. Consider a point $p=(0,0,1)$. Compute the distance between p and the plane W by following these steps: Let $\vec{p}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. In parts (a) and (b), we shall find the vector \vec{x} joining p and the plane W and \vec{x} is orthogonal to W. I strongly recommend that you draw pictures to demonstrate the ideas.
a) Let $\vec{q} \in W$ and $\vec{x}=\vec{p}-\vec{q}$. Express \vec{q} in terms of \vec{u} and \vec{v} and use this to describe \vec{x}.
b) Suppose $\vec{x} \perp W$, then \vec{x} is perpendicular to any vector in W, in particular to \vec{u} and \vec{v}. Use this condition to solve for the undetermined constants in the description of \vec{x}.
c) Use \vec{x} to find the desired distance (i.e. distance between p and W).

2 A simple model for the weather says that a sunny day is 90% likely to be followed by another sunny day, and a rainy day is 50% likely to be followed by another rainy day. Let $\vec{x}_{k}=\left[\begin{array}{c}s_{k} \\ r_{k}\end{array}\right]$ where s_{k} is the probability that the k-th day is sunny and r_{k} is the probability that the k-th day is rainy. The weather is then modeled by the dynamical system $\vec{x}_{k+1}=A \vec{x}_{k}$ where A is the transition matrix. Suppose we know that initially it is a sunny day, i.e. $\vec{x}_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
a) Find \vec{x}_{k}.
b) What is the long term weather prediction?

3 Let $\vec{w}_{1}=\left[\begin{array}{c}1 \\ 3 \\ -2 \\ 0 \\ 2 \\ 0\end{array}\right], \vec{w}_{2}=\left[\begin{array}{c}2 \\ 6 \\ -5 \\ -2 \\ 4 \\ -3\end{array}\right], \vec{w}_{3}=\left[\begin{array}{c}0 \\ 0 \\ 5 \\ 10 \\ 0 \\ 15\end{array}\right], \vec{w}_{4}=\left[\begin{array}{c}2 \\ 6 \\ 0 \\ 8 \\ 4 \\ 18\end{array}\right]$ and $W=\operatorname{span}\left(\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \vec{w}_{4}\right)$. Find a basis for W^{\perp}.
Hint: Construct a matrix A with $\vec{w}_{1}^{T}, \vec{w}_{2}^{T}, \vec{w}_{3}^{T}, \vec{w}_{4}^{T}$ be its rows. What is the connection between W and a special subspace related to A^{T}, and what is the known orthogonal complement to that special subspace?

