Homework 16 – cover lectures through 4/15

1 Let
$$\vec{u} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \vec{v} = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$$
 and $W = \operatorname{span}(\vec{u}, \vec{v})$. Consider a point $p = (0, 0, 1)$. Compute the distance $\begin{bmatrix} 0 \end{bmatrix}$

between p and the plane W by following these steps: Let $\vec{p} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. In parts (a) and (b), we shall find the vector \vec{x} joining p and the plane W and \vec{x} is orthogonal to W. I strongly recommend that you draw pictures to demonstrate the ideas.

- a) Let $\vec{q} \in W$ and $\vec{x} = \vec{p} \vec{q}$. Express \vec{q} in terms of \vec{u} and \vec{v} and use this to describe \vec{x} .
- b) Suppose $\vec{x} \perp W$, then \vec{x} is perpendicular to any vector in W, in particular to \vec{u} and \vec{v} . Use this condition to solve for the undetermined constants in the description of \vec{x} .
- c) Use \vec{x} to find the desired distance (i.e. distance between p and W).
- 2 A simple model for the weather says that a sunny day is 90% likely to be followed by another sunny day, and a rainy day is 50% likely to be followed by another rainy day. Let $\vec{x}_k =$ where s_k is the probability that the k-th day is sunny and r_k is the probability that the k-th day is rainy. The weather is then modeled by the dynamical system $\vec{x}_{k+1} = A\vec{x}_k$ where A is the transition matrix. Suppose we know that initially it is a sunny day, i.e. $\vec{x}_0 = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$.
- a) Find \vec{x}_k .
- b) What is the long term weather prediction?

$$3 \text{ Let } \vec{w_1} = \begin{bmatrix} 1\\3\\-2\\0\\2\\0\\2\\0 \end{bmatrix}, \vec{w_2} = \begin{bmatrix} 2\\6\\-5\\-2\\4\\-3\\-2\\4\\-3 \end{bmatrix}, \vec{w_3} = \begin{bmatrix} 0\\0\\5\\10\\0\\15\\\end{bmatrix}, \vec{w_4} = \begin{bmatrix} 2\\6\\0\\8\\4\\18 \end{bmatrix} \text{ and } W = \operatorname{span}(\vec{w_1}, \vec{w_2}, \vec{w_3}, \vec{w_4}). \text{ Find a}$$

Hint: Construct a matrix A with $\vec{w}_1^T, \vec{w}_2^T, \vec{w}_3^T, \vec{w}_4^T$ be its rows. What is the connection between W and a special subspace related to A^{T} , and what is the known orthogonal complement to that special subspace?