
1 Sufficient statistics

A statistic is a function T = r(X1, X2, · · · , Xn) of the random sample X1, X2, · · · , Xn.
Examples are

X̄n =
1

n

n∑
i=1

Xi, (the sample mean)

s2 = =
1

n− 1

n∑
i=1

(Xi − X̄n)2, (the sample variance)

T1 = max{X1, X2, · · · , Xn}
T2 = 5

(1)

The last statistic is a bit strange (it completely igonores the random sample),
but it is still a statistic. We say a statistic T is an estimator of a population
parameter if T is usually close to θ. The sample mean is an estimator for
the population mean; the sample variance is an estimator for the population
variation.

Obviously, there are lots of functions of X1, X2, · · · , Xn and so lots of
statistics. When we look for a good estimator, do we really need to consider
all of them, or is there a much smaller set of statistics we could consider?
Another way to ask the question is if there are a few key functions of the
random sample which will by themselves contain all the information the
sample does. For example, suppose we know the sample mean and the sample
variance. Does the random sample contain any more information about the
population than this? We should emphasize that we are always assuming our
population is described by a given family of distributions (normal, binomial,
gamma or ...) with one or several unknown parameters. The answer to
the above question will depend on what family of distributions we assume
describes the population.

We start with a heuristic definition of a sufficient statistic. We say T is
a sufficient statistic if the statistician who knows the value of T can do just
as good a job of estimating the unknown parameter θ as the statistician who
knows the entire random sample.

The mathematical definition is as follows. A statistic T = r(X1, X2, · · · , Xn)
is a sufficient statistic if for each t, the conditional distribution of X1, X2, · · · , Xn

given T = t and θ does not depend on θ.
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To motivate the mathematical definition, we consider the following “ex-
periment.” Let T = r(X1, · · · , Xn) be a sufficient statistic. There are two
statisticians; we will call them A and B. Statistician A knows the entire ran-
dom sample X1, · · · , Xn, but statistician B only knows the value of T , call it
t. Since the conditional distribution of X1, · · · , Xn given θ and T does not
depend on θ, statistician B knows this conditional distribution. So he can
use his computer to generate a random sample X ′

1, · · · , X ′
n which has this

conditional distribution. But then his random sample has the same distri-
bution as a random sample drawn from the population (with its unknown
value of θ). So statistician B can use his random sample X ′

1, · · · , X ′
n to com-

pute whatever statistician A computes using his random sample X1, · · · , Xn,
and he will (on average) do as well as statistician A. Thus the mathematical
definition of sufficient statistic implies the heuristic definition.

It is difficult to use the definition to check if a statistic is sufficient or to
find a sufficient statistic. Luckily, there is a theorem that makes it easy to
find sufficient statistics.

Theorem 1. (Factorization theorem) Let X1, X2, · · · , Xn be a random sam-
ple with joint density f(x1, x2, · · · , xn|θ). A statistic T = r(X1, X2, · · · , Xn)
is sufficient if and only if the joint density can be factored as follows:

f(x1, x2, · · · , xn|θ) = u(x1, x2, · · · , xn) v(r(x1, x2, · · · , xn), θ) (2)

where u and v are non-negative functions. The function u can depend on
the full random sample x1, · · · , xn, but not on the unknown parameter θ.
The function v can depend on θ, but can depend on the random sample only
through the value of r(x1, · · · , xn).

It is easy to see that if f(t) is a one to one function and T is a sufficient
statistic, then f(T ) is a sufficient statistic. In particular we can multiply a
sufficient statistic by a nonzero constant and get another sufficient statistic.

We now apply the theorem to some examples.

Example (normal population, unknown mean, known variance) We consider
a normal population for which the mean µ is unknown, but the the variance
σ2 is known. The joint density is

f(x1, · · · , xn|µ) = (2π)−n/2 σ−n exp

(
−1

2σ2

n∑
i=1

(xi − µ)2

)
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= (2π)−n/2 σ−n exp

(
−1

2σ2

n∑
i=1

x2
i +

µ

σ2

n∑
i=1

xi − nµ2

2σ2

)

Since σ2 is known, we can let

u(x1, · · · , xn) = (2π)−n/2 σ−n exp

(
−1

2σ2

n∑
i=1

x2
i

)

and

v(r(x1, x2, · · · , xn), µ) = exp

(
−nµ2

2σ2
+

µ

σ2
r(x1, x2, · · · , xn)

)

where

r(x1, x2, · · · , xn) =
n∑

i=1

xi

By the factorization theorem this shows that
∑n

i=1 Xi is a sufficient statis-
tic. It follows that the sample mean X̄n is also a sufficient statistic.

Example (Uniform population) Now suppose the Xi are uniformly dis-
tributed on [0, θ] where θ is unknown. Then the joint density is

f(x1, · · · , xn|θ) = θ−n 1(xi ≤ θ, i = 1, 2, · · · , n)

Here 1(E) is an indicator function. It is 1 if the event E holds, 0 if it does
not. Now xi ≤ θ for i = 1, 2, · · · , n if and only if max{x1, x2, · · · , xn} ≤ θ.
So we have

f(x1, · · · , xn|θ) = θ−n 1(max{x1, x2, · · · , xn} ≤ θ)

By the factorization theorem this shows that

T = max{X1, X2, · · · , Xn}
is a sufficient statistic.

What about the sample mean? Is it a sufficient statistic in this example?
By the factorization theorem it is a sufficient statistic only if we can write
1(max{x1, x2, · · · , xn} ≤ θ) as a function of just the sample mean and θ. This
is impossible, so the sample mean is not a sufficient statistic in this setting.
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Example (Gamma population, α unknown, β known) Now suppose the pop-
ulation has a gamma distribution and we know β but α is unknown. Then
the joint density is

f(x1, · · · , xn|α) =
βnα

Γ(α)n

(
n∏

i=1

xα−1
i

)
exp(−β

n∑
i=1

xi)

We can write

n∏
i=1

xα−1
i = exp

(
(α− 1)

n∑
i=1

ln(xi)

)

By the factorization theorem this shows that

T =
n∑

i=1

ln(Xi)

is a sufficient statistic. Note that exp(T ) =
∏n

i=1 Xi is also a sufficient
statistic. But the sample mean is not a sufficient statistic.

Now we reconsider the example of a normal population, but suppose that
both µ and σ2 are both unknown. Then the sample mean is not a sufficient
statistic. In this case we need to use more than one statistic to get sufficiency.
The definition (both heuristic and mathematical) of sufficiency extends to
several statistics in a natural way.

We consider k statistics

Ti = ri(X1, X2, · · · , Xn), i = 1, 2, · · · , k (3)

We say T1, T2, · · · , Tk are jointly sufficient statistics if the statistician who
knows the values of T1, T2, · · · , Tk can do just as good a job of estimating
the unknown parameter θ as the statistician who knows the entire random
sample. In this setting θ typically represents several parameters and the
number of statistics, k, is equal to the number of unknown parameters.

The mathematical definition is as follows. The statistics T1, T2, · · · , Tk

are jointly sufficient if for each t1, t2, · · · , tk, the conditional distribution of
X1, X2, · · · , Xn given Ti = ti for i = 1, 2, · · · , n and θ does not depend on θ.

Again, we don’t have to work with this definition because we have the
following theorem:
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Theorem 2. (Factorization theorem) Let X1, X2, · · · , Xn be a random sam-
ple with joint density f(x1, x2, · · · , xn|θ). The statistics

Ti = ri(X1, X2, · · · , Xn), i = 1, 2, · · · , k (4)

are jointly sufficient if and only if the joint density can be factored as follows:

f(x1, x2, · · · , xn|θ) = u(x1, x2, · · · , xn)

v(r1(x1, · · · , xn), r2(x1, · · · , xn), · · · , rk(x1, · · · , xn), θ)

where u and v are non-negative functions. The function u can depend on
the full random sample x1, · · · , xn, but not on the unknown parameters θ.
The function v can depend on θ, but can depend on the random sample only
through the values of ri(x1, · · · , xn), i = 1, 2, · · · , k.

Recall that for a single statistic we can apply a one to one function to
the statistic and get another sufficient statistic. This generalizes as follows.
Let g(t1, t2, · · · , tk) be a function whose values are in Rk and which is one
to one. Let gi(t1, · · · , tk), i = 1, 2, · · · , k be the component functions of g.
Then if T1, T2, · · · , Tk are jointly sufficient, then gi(T1, T2, · · · , Tk) are jointly
sufficient.

We now revisit two examples. First consider a normal population with
unknown mean and variance. Our previous equations show that

T1 =
n∑

i=1

Xi, T2 =
n∑

i=1

X2
i

are jointly sufficient statistics. Another set of jointly sufficent statistics is
the sample mean and sample variance. (What is g(t1, t2) ?)

Now consider a population with the gamma distribution with both α and
β unknown. Then

T1 =
n∑

i=1

Xi, T2 =
n∑

i=1

ln(Xi)

are jointly sufficient statistics.
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2 Exercises

1. Gamma, both parameters unknown, show sum and product form a suffi-
cient

2. Uniform on [θ1, θ2]. Find two statistics that are sufficient.

3. Poisson or geometric - find sufficient statistic.

4. Beta ?
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