Learning from Similar Linear Representations: Adaptivity, Minimaxity, and Robustness
When
Where
Title: Learning from Similar Linear Representations: Adaptivity, Minimaxity, and Robustness
Abstract: Representation multi-task learning (MTL) and transfer learning (TL) have achieved tremendous success in practice. However, the theoretical understanding of these methods is still lacking. Most existing theoretical works focus on cases where all tasks share the same representation, and claim that MTL and TL almost always improve performance. However, as the number of tasks grows, assuming all tasks share the same representation is unrealistic. Also, this does not always match empirical findings, which suggest that a shared representation may not necessarily improve single-task or target-only learning performance. In this paper, we aim to understand how to learn from tasks with similar but not exactly the same linear representations, while dealing with outlier tasks. With a known intrinsic dimension, we propose two algorithms that are adaptive to the similarity structure and robust to outlier tasks under both MTL and TL settings. Our algorithms outperform single-task or target-only learning when representations across tasks are sufficiently similar and the fraction of outlier tasks is small. Furthermore, they always perform no worse than single-task learning or target-only learning, even when the representations are dissimilar. We provide information-theoretic lower bounds to show that our algorithms are nearly minimax optimal in a large regime. We also propose an algorithm to adapt to the unknown intrinsic dimension. We conduct two simulation studies to verify our theoretical results.